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1. Introduction

After the experimental observation of neutral-currents processes in 1973, the require-
ment for a proof of renormalizability of non-abelian gauge theories predicting the exis-
tence of such processes became an essential point in quantum field theory. The discovery
[1, 2] of BRST symmetry for the Yang - Mills action made the electroweak model pre-
dicting these processes a consistent theoretical framework. As a matter of fact, this
underlying symmetry of the gauge fixed action allowed to show it to posses [3, 4] all the
required term to make it renormalizable.
BRST symmetry [3, 5] showed to apply to a really wide class of systems of physical
interest, and can be easily generalized to a generic system which possessing some ba-
sic “gauge symmetry”. To this end, we recall that in the literature there exist different
formulations for the BRST formalism, with substantial differences from each other. On
one side there exists a formulation of BRST symmetry for constrained systems based on
canonical quantization methods which is widely diffused [5, 6] and on the other hand
there is another approach [3] to derive BRST symmetry based entirely on path integral
methods and is applicable to systems with infinite degrees of freedom avoiding those
inconsistencies proper of canonical quantization methods we discussed above. In this
paper we will follow the latter derivation.

2. DeWitt - Faddev - Popov method

In order to discuss BRST symmetry in the general case [3], let us consider a physical
system whose dynamical variables are the “fields” {φr}r and whose action is I [φ]. Let
us assume the action and the field integration measure

[dφ] ≡
∏
r

dφr (1)

to be invariant with respect to some infinitesimal transformation we will write as

φr → φr + εAδAφ
r (2)

≡ φrε ,

where the indexes r,A are meant to assume both discrete and continuous values. The
symmetry (2) will make possible, to derive an expression for the functional integral of
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some operator invariant under (2) which will be useful in the following. As a matter of
fact, we consider

I ≡
∫

[dφ] G [φ]B [f [φ]] det (F [φ])

where G [φ] is a functional of the fields {φr}r invariant under (2), {fA [φ]}A are some
functionals of the fields {φr}r which are not invariant under (2), B [f [φ]] is a functional
of the {fA [φ]}A and

FAB [φ] ≡ δfA [φε]
δεB

∣∣∣∣
ε=0

and we show the following

Theorem 1. I is independent on the choice of the functionals {fA [φ]}A and depends
on B [f [φ]] only through a multiplicative field-independent constant.

We can use Theorem 1 to gain the expression for the functional integral of an operator
invariant under (2) we were searching for. Let us consider a functional V [φ] invariant
under (2) and write the variation of {fA [φ]}A under (2) as

fA [φ] → fA [φ] + εBδBfA [φ]

= fA [φ] + εB
δfA [φε]
δεB

∣∣∣∣
ε=0

,

setting Ω ≡
∫ ∏

A dfA and taking

G [φ] = eiI[φ]V [φ] .

Using Theorem 1 we can thus derive this important identity originally derived by a B.
S. DeWitt, L. D. Fadeev e V. N. Popov [7, 8]

I =
∫

[dφ] eiI[φ]V [φ]B [f [φ]] det (δBfA [φ]) (3)

=
C

C|B=1

I |B=1

=
C

Ω

∫
[dφ] eiI[φ]V [φ].

3. BRST transformation

In order to introduce the BRST transformation we write the functional B[f ] by means
of its Fourier transform

B[f ] =
∫

[dh]eih
AfAB[h] (4)

where [dh] ≡
∏
A dh

A. We recall [9] the the determinant of the matrix δAfB [φ] can
be written by means of a functional integral on some Grassmann variables

{
cA, c∗A

}
A
,

called ghost ed antighost fields respectively1

det (δAfB [φ]) ∝
∫

[dc∗] [dc] eic
∗BcAδAfB [φ] (5)

1We stress that cA and c∗A, being completely independent on each other, are not related by complex
conjugation.
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where [dc] ≡
∏
A dc

A, [dc∗] ≡
∏
A dc

∗A. Substituting (4), (5) in (3) we have

I ∝
∫

[dφ] eiI[φ]V [φ]
∫

[dh]eih
AfA[φ]B[h]

∫
[dc∗] [dc] eic

∗BcAδAfB [φ] (6)

=
∫

[dφ] [dh] [dc∗] [dc] eiI[φ]eih
AfA[φ]eic

∗BcAδAfB [φ]V [φ] B[h]

=
∫

[dφ] [dh] [dc∗] [dc] eiINEW [φ,h,c,c∗]V [φ] B[h]

with
INEW [φ, h, c, c∗] ≡ I [φ] + hAfA [φ] + c∗BcAδAfB [φ] . (7)

Now we set {ψi}i ≡
{
{φr}r ,

{
hA
}
A
,
{
cA, c∗A

}
A

}
and give the following

Definition 2. Given a functional F [ψ] se δF [ψ] = (δψi)Gi [ψ] we set Gi [ψ] ≡ δLF [ψ]
δψi

.

Definition 3. Given a functional F [ψ], we will write the first order variation of F [ψ]
under a transformation (2) as δF [ψ] = εAδAF [ψ].

Definition 4. The structure constants fCAB are given by

[δB, δC ] = fABCδA. (8)

Definition 5. The Slavnov’s operator is given by

s ≡ cA (δAφr)
δL
δφr
− 1

2
cBcCfABC

δL
δcA
− hA δL

δc∗A
. (9)

Remark 6. Applying the Definitions 2, 3 to a generic functional F [φ] we get

δF [φ] = (δψi)
δLF [φ]
δψi

= (δφs)
δLF [φ]
δφs

and taking δφs = εAδAφ
s

δF [φ] = εAδAF [φ]

= (δφs)
δLF [φ]
δφs

= εA (δAφs)
δLF [φ]
δφs

so, being
{
εA
}
A
completely arbitrary, we find

δAF [φ] =
δLF [φ]
δφs

δAφ
s. (10)

We are now in the position to show that the action (7) even if, containing the func-
tionals {fA [φ]}A, is not invariant under (2), is symmetric with respect to another trans-
formation, originally discovered by C. Becchi, A. Rouet, R. Stora e I. V. Tyutin within
gauge theories [3, 5] and known as BRST transformation, acting on a generic functional
F [ψ] in the following way

F [ψ]→ F [ψ] + θsF [ψ] (11)
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where θ is an “infinitesimal” Grassmann variable .
We observe that the transformation (11), acting on a functional F [φ], is just a trans-

formation (2) with infinitesimal parameters εA = θcA. In fact under (11)

F [φ] → F [φ] + θsF [φ]

= F [φ] + θcA (δAφr)
δLF [φ]
δφr

= F [φ] +
(
θcA
)
δAF [φ] (12)

which, by means of 3,is just a transformation (2) with infinitesimal parameter εA = θcA.
To show that (11) is a symmetry for INEW [φ, h, c, c∗] we first need to show that the

BRST transformation is nilpotent i.e. s2 = 0. Using (9) we have

s2 =

[
cA (δAφr)

δL
δφr
− 1

2
cBcCfABC

δL
δcA
− hA δL

δc∗A

][
cD (δDφs)

δL
δφs
− 1

2
cDcEfFDE × (13)

× δL
δcF
− hD δL

δc∗D

]
=

= cA (δAφr)

{
δL
(
cDδDφ

s
)

δφr
δL
δφs

+ cD (δDφs)
δL
δφr

δL
δφs
− 1

2

[
δL
(
cDcEfFDE

)
δφr

δL
δcF

+ cDcE ×

×fFDE
δL
δφr

δL
δcF

]
− hD δL

δφr
δL
δc∗D

}
− 1

2
cBcCfABC

{
δL
(
cDδDφ

s
)

δcA
δL
δφs
− cD (δDφs)×

× δL
δcA

δL
δφs
− 1

2

[
δL
(
cDcEfFDE

)
δcA

δL
δcF

+ cDcEfFDE
δL
δcA

δL
δcF

]
− hD δL

δcA
δL
δc∗D

}
+

−hA
[
− cD (δDφs)

δL
δc∗A

δL
δφs
− 1

2
cDcEfFDE

δL
δc∗A

δL
δcF
− hD δL

δc∗A
δL
δc∗D

]
=

= cA (δAφr)

[
cD
δL (δDφs)

δφr
δL
δφs
− 1

2

(
cDcE

δLf
F
DE

δφr
δL
δcF

+ cDcEfFDE
δL
δφr

δL
δcF

)
+

−hD δL
δφr

δL
δc∗D

]
− 1

2
cBcCfABC

[
(δAφs)

δL
δφs
− cD (δDφs)

δL
δcA

δL
δφs
− fFADcD

δL
δcF

+

−hD δL
δcA

δL
δc∗D

]
+ hA

[
cD (δDφs)

δL
δc∗A

δL
δφs

+
1
2
cDcEfFDE

δL
δc∗A

δL
δcF

]
=
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=
1
2
cAcD

[(
δ[Aφ

r
) δL (δD]φ

s
)

δφr
− fCADδCφs

]
δL
δφs

+
1
2
cBcCcD

[
fABCf

F
AD + (14)

− (δDφr)
δLf

F
BC

δφr

]
δL
δcF
− 1

2
cAcDcE (δAφr) fFDE

δL
δφr

δL
δcF

+
1
2
cDcBcCfABC (δDφs)×

× δL
δφs

δL
δcA

+
1
2
cDcEhAfFDE

δL
δc∗A

δL
δcF
− cA (δAφr)hD

δL
δφr

δL
δc∗D

+ cD (δDφs)hA
δL
δc∗A

δL
δφs

+

+
1
2
cBcCfABCh

D δL
δcA

δL
δc∗D

=

=
1
2
cAcB

[
δL
(
δ[Bφ

r
)

δφs
δA]φ

s − fCABδCφr
]
δL
δφr
− 1

2
cBcCcD

(
fEBCf

A
DE +

δLf
A
BC

δφr
δDφ

r

)
×

× δL
δcA

.

By means of (13) it’s easy to show that the BRST transformation is nilpotent. In order
to show this, we consider (10) with F [φ] = δBφ

r and we take the antisymmetric part
with respect to A,B using (8); finally we get

δ[AδB]φ
r =

δL
(
δ[Bφ

r
)

δφs
δA]φ

s

= fCABδCφ
r

showing that the first term in square brackets in the last passage of (13) equals zero.
Besides we consider Jacobi’s identity

0 = [[δA, δB] , δC ] + [[δB, δC ] , δA] + [[δC , δA] , δB] (15)
=

[
fDABδD, δC

]
+
[
fDBCδD, δA

]
+
[
fDCAδD, δB

]
= fDABδDδC − δC

(
fDABδD

)
+ fDBCδDδA − δA

(
fDBCδD

)
+ fDCAδDδB − δB

(
fDCAδD

)
= fDABδ[DδC] −

(
δCf

D
AB

)
δD + fDBCδ[DδA] −

(
δAf

D
BC

)
δD + fDCAδ[DδB] −

(
δBf

D
CA

)
δD

= fDABf
E
DCδE + fDBCf

E
DAδE + fDCAf

E
DBδE −

(
δCf

D
AB

)
δD −

(
δAf

D
BC

)
δD +

−
(
δBf

D
CA

)
δD

=
(
fDABf

E
DC + fDBCf

E
DA + fDCAf

E
DB − δCfEAB − δAfEBC − δBfECA

)
δE

=
1
2

[
fD[AB]f

E
DC + fD[BC]f

E
DA + fD[CA]f

E
DB −

(
δCf

E
[AB] + δAf

E
[BC] + δBf

E
[CA]

)]
δE

=
1
2

(
fD[ABf

E
DC] − δ[Cf

E
AB]

)
δE .

Looking at (8) it’s easy to realize that the structure constants fCAB depend only on the
fields {φr}r. Thus we can employ (10) with F [φ] = fCAB and gain

δDf
C
AB =

δLf
C
AB

δφs
δDφ

s. (16)
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Substituting (16) in (15) we get(
fD[ABf

E
DC] −

δLf
E
[AB

δφs
δC]φ

s

)
δE = 0

which implies

fD[ABf
E
C]D +

δLf
E
[AB

δφs
δC]φ

s = 0. (17)

(17) is just a generalization of the Jacobi’s identity for field-dependent structure con-
stants. Using (17) the second term in the last passage of (13) is

1
2
cBcCcD

(
fEBCf

A
DE +

δLf
A
BC

δφr
δDφ

r

)
δL
δcA

=
1
2
cBcCcD

1
3!

(
fE[BCf

A
D]E +

δLf
A
[BC

δφr
δD]φ

r

)
×

× δL
δcA

= 0,

so

s2 = 0. (18)

To show the action (7) to be invariant under (11) we observe that, using (10), we have

s
(
c∗AfA [φ]

)
= cB (δBφr)

δL
(
c∗AfA [φ]

)
δφr

− hB
δL
(
c∗AfA [φ]

)
δc∗B

(19)

= cB (δBφr) c∗A
δLfA [φ]
δφr

− hB δLc
∗A

δc∗B
fA [φ]

= −
[
c∗BcA (δAφr)

δLfB [φ]
δφr

+ hAfA [φ]
]

= −
(
c∗BcAδAfB [φ] + hAfA [φ]

)
.

Substituting (19) in (7) we get

INEW [φ, h, c, c∗] = I [φ]− s
(
c∗AfA [φ]

)
. (20)

Thus, using (18) and the fact that the transformation (11), acting on I [φ], is a transfor-
mation (2) and that I [φ] is invariant under (2), we can show that under (11)

INEW [φ, h, c, c∗] → INEW [φ, h, c, c∗] + θsINEW [φ, h, c, c∗]

= INEW [φ, h, c, c∗] + θs
[
I [φ]− s

(
c∗AfA [φ]

)]
= INEW [φ, h, c, c∗] + θsI [φ]
= INEW [φ, h, c, c∗] .

This shows the invariance of INEW [φ, h, c, c∗] under the BRST transformation.
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4. BRST charge

In the quantum theory the transformation (11) acts on states in the Hilbert space H.
We can thus define a fermionic operator Q, known as BRST charge, so that the variation
under a transformation (11) of a generic operator Φ [ψ] is

δθΦ [ψ] = −i [θQ,Φ [ψ]] . (21)

If Φ [ψ] is bosonic or fermionic, (21) becomes

δθΦ [ψ] = −i (θQΦ [ψ]− Φ [ψ] θQ) (22)
= −iθ (QΦ [ψ]∓ Φ [ψ]Q)
= −iθ [Q,Φ [ψ]]∓ .

Employing the fact that the BRST transformation is nilpotent, it is easy to show that
Q2 = 0. As a matter of fact, by means of (11), (22) we have δθΦ [ψ] = θsΦ [ψ] =
−iθ [Q,Φ [ψ]]∓. Thus, using (18) we get

0 = s2Φ [ψ]
= s

(
−i [Q,Φ [ψ]]∓

)
= −is [Q,Φ [ψ]]∓
= −

[
Q, [Q,Φ [ψ]]∓

]
±

= − [Q (QΦ [ψ]∓ Φ [ψ]Q)± (QΨ [ψ]∓ Φ [ψ]Q)Q]
= −

(
Q2Φ [ψ]− Φ [ψ]Q2

)
= −

[
Q2,Φ [ψ]

]
from which follows that Q2 ∝ I o Q2 = 0. But, having Q a non vanishing ghost number
[10], we necessarily have

Q2 = 0.

The charge Q has a really important role in selecting physical states in H. To show this,
we consider some operators OA, OB, . . . depending just on the fields {φr}r and invariant
under (2). If we can express the vacuum T -product of an arbitrary number of operators
OA, OB, . . . as a sum over the paths [3, 9], we get

〈0 |T (OAOB · · · )| 0〉 =
∫

[dφ] eiI[φ]OAOB · · ·∫
[dφ] eiI[φ]

which, using (3) and (6), becomes

〈0 |T (OAOB · · · )| 0〉 =
∫

[dφ] [dh] [dc∗] [dc] eiINEW [φ,h,c,c∗]OAOB · · ·B [h]∫
[dφ] [dh] [dc∗] [dc] eiINEW [φ,h,c,c∗]B [h]

. (23)

Given two physical states |α〉 , |β〉 we know [9] that the amplitude 〈α|β〉 can be expressed
in terms of a path integral. Anyway, looking at (23), (7) we see that 〈α|β〉 depends on
the functionals {fA [φ]}A, whose choice must not change the amplitude between two
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physical states. Thus we require that, varying Ψ ≡ c∗AfA [φ], the amplitude 〈α|β〉
remains unchanged. Using (22) we get

δ 〈α|β〉 = 〈α |iδ (sΨ)|β〉
= i 〈α |s (δΨ)|β〉
= i

〈
α
∣∣−i [Q, δΨ]+

∣∣β〉
= 0

which implies
〈α|Q = Q |β〉 = 0. (24)

We have thus shown that the BRST charge select physical states by means of (24).
We conclude observing that in all this procedure and derivation we never employ the
canonical formalism any way. This makes us free to avoid all of the ambiguities which
follow from the canonical quantization of systems with infinite degrees of freedoms [4].
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