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Summary. — The geometrical interpretation of first- and second-class constraints
in the phase space is outlined, with the aim to demonstrate the different reduction of
degrees of freedom they produce. Furthermore, the quantization of such constrained
systems is analyzed, which provide a demonstration of how the Fadeev-Popov de-
terminant arises in the path-integral formulation.
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1. – Geometrical interpretation of constraints

The characterization of a set of constraints being first- or second-class is based on their
Poisson brackets, restricted to the constraint hypersurface [1]. However, such a procedure
could not be so easily implemented. For instance, let us consider a second-class set of
constraints, i.e.

(1) {χα}, [χα, χβ ] ≈ Cαβ

Cαβ being an invertible matrix. The same hypersurface in the phase space can be defined
by the set {χ2

α}, which satisfy

(2) [χ2
α, χ

2
β ] ≈ 0

and thus it appears as a first-class set. This contradiction stands on the fact that {χ2
α}

does not satisfy the regularity condition, which states that given a set of constraints, the
matrix ∂χα

∂{q,p} must have maximum rank. The regularity condition itself is often difficult
to verify and it does not give any insight on the meaning of constraints being first- or
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second-class. Therefore one is looking for a different way to classify sets of constraints,
based on properties of the constraints hypersurface.
Let us consider an hypersurface Σ in the phase space, given by a parametrization xµ =
xµ(yi), (µ = 1, . . . , 2N), yi (i = 1, . . . , 2N −M) being coordinates on the hypersurface.
A phase space is characterized by Poisson brackets among variables

(3) [xµ, xν ] = σµν

where σµν is non-degenerate, such that one can define its inverse σµν , the so-called sym-
plectic form. Given phase space functions F and G, a vector Gµ representing the action
of one of them, for instance G, can be defined as [F,G] = Gµ∂µF . On Σ one can define
the induced symplectic form σij = σµν

∂xµ

∂yi
∂xν

∂yj . Hence a set of constraints can be char-
acterize in terms of properties of the induced symplectic form.

First-class constraints. For a set γα α = 1, . . . ,M of first-class constraints, we indicate
corresponding vectors with Xµ

α and vectors normal to Σ with nµβ = ∇µγβ . Constraints
being 1st-class, we have Xµ

αnµβ = 0. Therefore Xµ
α belong to the tangent space to Σ

and they can be taken as part of the basis. Moreover, they define a sub-manifold, where
the induced symplectic form is degenerate, i.e. σαβ = σµνX

µ
αX

ν
β is non-invertible. One

can go over and demonstrates that no other sub-manifold exists on which the induced
symplectic form is degenerate.
Previous statements provide a geometrical characterization for the constraints hypersur-
face in the 1st-class case: the symplectic form induced on Σ is maximally degenerate.
Therefore, in order to define a symplectic structure on constraint hypersurface, the orbits
generated by constraints themselves must be factored out (reduced phase space). These
orbits correspond to gauge orbits in standard gauge theories.
Finally, in order to give an Hamiltonian formulation for a system with a set of first
class constraints, one not only has to restrict to the hypersurface defined by constraints,
but another reduction of phase space variables has to be performed. This explains why,
given a set of M first-class constraints, the number of degrees of freedom is reduced to
2N − 2M .

Second-class constraints. Let us now consider a set of 2nd-class constraints χα. From
considerations of the previous paragraph, it is easy to recognize that vectors Xµ

α , giving
the flux generated by constraints, do not belong to the space tangent to Σ. Furthermore,
they can be taken as basis vectors for the M -dimensional manifold obtained by factoring
out the constraint hypersurface Σ. On this manifold, the induced symplectic form is pre-
cisely Cαβ . Being Poisson brackets independent on the frame, we choose as coordinates
on the full phase space the set {yi, χα}. Hence, given two functions F and G, we write
their brackets on Σ

(4) [F,G]|Σ = σij∂iF |Σ∂jG|Σ + Cαβ∂αF |Σ∂βG|Σ

so that Poisson brackets on constraints hypersurface is given by Dirac brackets in the
full phase space

(5) σij∂iF |Σ∂jG|Σ = [F,G]|Σ − [F, χα]Cαβ [χβ , G]|Σ.
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Therefore, being the symplectic form induced on Σ non-trivial, one must replace Poisson
brackets with the Dirac ones.
For what concerns the number of degrees of freedom, fluxes generated by constraints
lead functionals outside Σ, so that one must not factor out these orbits. In a more
mathematical point of view, one can demonstrate that the symplectic form σij is non-
degenerate. Therefore, the number of degrees of freedom for such a kind of dynamical
systems is 2N −M .

2. – Quantization of constrained systems

First-class constraints. The quantization procedure for constrained systems is a very pe-
culiar point in a theory with some symmetry. Even though one should quantize true
degrees of freedom, thus referring to the reduced phase space (reduced phase space quan-
tization), there are several reasons to quantize in the full phase space [1]. At first the
preservation of symmetries is very useful in a quantum model. For instance, particles can
be classified according with irreducible representations of symmetry groups. Moreover in
the reduced phase space quantization one can lost locality in space. As an example, in-
variant quantities in gauge theories are developed starting from holonomies along loops.
Finally the reduced phase space quantization can provide a very complicated symplectic
structure, such that one cannot be able to realize operators corresponding to physical
quantities on the Hilbert space.
Therefore one usually refers to the Dirac approach. In this method the full set of phase
space variables is quantized in a proper Hilbert space, where constraints are promoted
to operators. The kinematical Hilbert space, which contains physical states, is defined
as the kernel of such operators. This way, one solves constraints in the quantum setting.
Such a procedure can give problems with the emergence of anomalies, i.e. constraint
operators can be not first-class, because of some quantum corrections. In quantum Field
Theories the emergence of anomalies is confirmed by the impossibility to find a regular-
ization procedure preserving the symmetry. Moreover, even though one is able to define
a scalar product on the initial Hilbert space, this could not be extensible to the kine-
matical one. One of the main approach in this sense is the group averaging technique
[3].

Second-class constraints. Being second-class constraints not associated with true sym-
metries, they have to be eliminated before the quantization. It can be done directly
by solving χα = 0, eliminating redundant variables and quantizing only coordinates on
constraint hypersurface, or one can use the formulation in terms of Dirac brackets, by re-
placing them (not Poisson ones) with commutators of quantum operators. In both cases
main difficulties are due to the implementation of non canonical commutation relations.
A quantum framework where one implements second-class conditions exists and it is the
path integral approach to gauge theories. In fact, one formally fixes the gauge and this
procedure gives rise to the Fadeev-Popov determinant [2]. But the set of gauge con-
straints plus a gauge fixing condition is second-class. We here provide a demonstration
that the emergence of the Fadeev-Popov determinant is due to the second-class character
of the set of constraints.
Let us consider a phase space with a set of second-class constraints {Cρ} = {Ga, χα},
Ga being gauge constraints, thus first-class, while χα are gauge fixing functionals. Their
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algebra is as follows

[Cρ, Cσ] =
(

0 [Ga, χβ ]
[χα, Gb] [χα, χβ ]

)
so we have

(6) det[Cρ, Cσ] = (det[Ga, χβ ])2.

The path integral of the theory is developed on constraint hypersurface

(7) Z =
∫

Σ

ΠiDy
i
√
|detσij |eiS

yi being coordinates on Σ, while S is the action. Since χα can be chosen as coordinates,
one can rewrite the expression above as

(8) Z =
∫

Σ

ΠiαDy
iDχρδ(χρ)

√
|detσjk|eiS .

Let us now introduce arbitrary phase space coordinates xA, for which

(9) ΠADx
A =

√
|detσjk||detCµν |ΠiσDy

iDχρ,

we end up with the following form of the path integral

(10) Z =
∫

Σ

ΠADx
A
√
|detCρσ|eiS =

∫
Σ

ΠADx
A|det[Ga, χβ ]|eiS

where we outline how the Fadeev-Popov determinant comes out.
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