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Abstract

Spin foams will be introduced from a geometrical and field-theoretical point of view.
Drawing the analogy with the concept of “plaquettes” will allow one to outline the pos-
sibility of recognizing spin-network states as basis for the functionals of the connection.
Spin foams, defined as branched surfaces, will accomplish the dual transformation that
leads to a physically-equivalent description of lattice gauge theory. Particular attention
will be paid to the description of physical observables in terms of the path-integral for-
mulation within this formalism, and to the mathematical meaning of these operations.
A spin-foam model for Yang-Mills theories will follow, and a background-independent
spin-foam model for quantum gravity will be obtained by slightly modifying the duality
map. The relation between spin-network states and the geometry of spacetime will be
further investigated. In particular, covariant quantum gravity will be approached con-
sidering spin-network states as states of the gravitational field. Equivalence classes for
spin foams will be established, and the interpretation of spin foams as quantum histories
will be proposed.



1 Introduction

It will be illustrated [1] that any lattice gauge theory can be transformed in a physically-
equivalent description, based on the spin-foam formalism. To this purpose, the idea of
spin networks and spin foams will be introduced, and the techniques that lead to the
analog of the path-integral definition of physical observables will be developed [2]. The
background independence of the result will be discussed.
The previous scheme will be then applied to covariant quantum gravity [3]. In this
case, the equivalence classes of spin networks that solve the physical constraints will
be reviewed [4], and spin foams will be shown to be the tool by which the transition
amplitudes between two states of the gravitational filed can be described [5].

2 Lattice Gauge Theory

A lattice k consists of links and plaquettes; if an orientation is chosen for them, edges
e and faces f are defined, respectively, as oriented links and plaquettes, but physical
quantities are independent of the choice of the (arbitrary) orientation. In particular, the
lattice k is composed of the edges on the boundary ∂k and the edges in the interior, k0,
so that

k = k0 ∪ ∂k, (1)

and Ek denotes the set of all the edges of k, {e}.
Connections on the lattice are applications that map the the edges into elements of a
(compact Lie) gauge group G,

g : Ek → G, (2)

e 7→ ge, (3)

ge being an element of the gauge group G, and the configuration space of the connections
on k is Ak.
Path integrals1, such as

W [φ] =
∫ ∏

e∈k

dge

 eiS(g)φ(g), (4)

are the quantities that describe physical information. In (4), (
∏

e∈k dge) is the Haar
measure on G, S(g) is the action, and the function φ(g) ∈ L2

0(Ak) denotes the particular
physics to be described. The action

S(g) =
∑
f∈k0

Sf (5)

can be written as the sum of terms referred to each face f ∈ k0 (face action): each term
Sf is required to be gauge invariant and to depend on the edges of the face itself only.

1Although in [1] the whole description is developed without specifying the choice of a Minkowskian
or a Euclidean background, for our purposes it will be more convenient to depict the model in a
Minkowskian frame.
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Throughout this discussion, we will be interested in boundary-states amplitudes Ω[φ],
whose weighting functionals φ[∂g] ∈ L2

0(A∂k) depend on the group elements carried by
boundary edges,

Ω[φ] :=
∫ ∏

e∈k

dge

 eiS(g)φ∗(∂g), (6)

i.e., the wave function of a physical state, that is the probability of obtaining a physical
state from vacuum. Any lattice gauge model can be turned in a physically-equivalent
description by means of the spin-foam formalism.

Spin-network States A spin network is an oriented graph, whose edges e are labeled
by irreducible representations of a gauge group ρe (colours), and whose vertices v are
labeled by an intertwiner Iv in the tensor product

⊗iVρi out
⊗j V

∗
ρj in

, (7)

where Vρ is the space of the irreps of ρ. The mathematical meaning of the intertwiners
is mapping the operations on a group in the operations on another group. If one de-
composes the space (7) in the sum of irreps, a sub-space can be found, which transforms
according to the trivial representation, as it is composed of invariant vectors. In this
picture,intertwiners form a map between ⊗iVρi out

and ⊗jV
∗
ρj in

. A spin-network state
or functional ΨS(g) can be associated to a spin network, such that

ψS(g) : ge → ρge , (8)

and reads

ψS(g) =

∏
v∈k

Iv

∏
e∈k

Dρeρe(ge)

 (9)

where Dρe ≡ (dimVρe)
1/2. The correspondence (8) is not one-to-one, so that spin net-

works can be defined equivalent if they lead to the same spin-network functional. Spin-
network states define the space L2

0(Ak) of gauge-invariant functional of the connections
Ak : according to the Peter-Weyl theorem, the matrix elements of the irreps of a group
form a basis for the functions of the Hilbert space of the L2 functions of the group. If
an orthonormal basis Bk for the intertwiners Iv is chosen, i.e.

Ia
b =

1

Dρe

δa
b, (10)

the basis for L2
0(Ak) will be orthonormal too; in this case, the spin-network functional

simply rewrites

ψS(g) = tr

[
ρ

(∏
i

gei

)]
. (11)

If only the edges on the boundary ∂k are taken into account, B∂k is the orthonormal basis
for L2

0(A∂k). Loops are the spin networks on the edges that surround a face (the smallest
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graphs possible), and induce a basis for the face action (5), so that the exponential in
(6) rewrites

eiSf =
∑

Sf∈Bf

cSf
ΨSf

, (12)

where cSf
are suitable coefficients.

The loop functional is therefore the trace of the holonomy around a face in a given
(irreducible) representation.

Spin Foams Spin foams are 2-dimensional branched surfaces that carry irreps and
intertwiners: the definition of analogous to that of spin networks, but one dimension has
to be added. Each branched surface F is composed of its unbranched components Fi,
so that F =

⋃
i Fi.

Given a spin network ψ, a spin foam F is an application such that

∀ψ, F : 0 → ψ, (13)

and, given any two disjoint spin networks ψ and ψ′, a spin foams F is an application
such that maps the former into the latter, or, equivalently,

∀ψ, ψ′, F : ψ → ψ′; F : 0 → ψ∗ ◦ ψ′, (14)

where ◦ denotes disjoint union.
A spin foam is non-degenerate iff each vertex is the end-point of at least one edge, each
edge of at last one face, and each face carries an irrep of the group G.
Equivalence classes cab be established for spin foams: spin foams are equivalent if one
can be obtained from the other by affine transformation, subdivision or orientation re-
versal of the lattice.

Let’s analyze in some detail how to express the path integral (6) in term of spin-foam
amplitudes. The integration can be performed into two steps.
The path integrals can be integrated over k0, as φ∗(∂g) is not affected by the integration,
i.e.,

Ω[g] =
∫

∂g′=g

∏
e∈k0

dg′e

 eiS(g′), (15)

and then inserted into (6), so that

Ω[φ] =
∫ ∏

e∈k0

dge

Ω(g)φ∗(∂g), (16)

(15) can be expanded into spin-network states. In fact, the exponential of the action
can be expanded as

eiS(g) =
∏

f∈k0

eiSf (g) =
∏

f∈k0

∑
Sf∈Bf

CSf
ψSf (g), (17)
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and, when substituted in (15), it brings the result

Ω[g] =
∫
∂g′=g

∏
e∈k0 dg′ee

iS(g′) =
∫
∂g′=g

∏
e∈k0 dg′e

∏
f∈k0

∑
Sf∈Bf

CSf
ψSf

(g′) =

=
∑
{f}→{Sf}

∫
∂g′=g

∏
e∈k0 dg′e

∏
f∈k0 CSf

ψSf (g), (18)

where, in the last step, the sum has been drawn out of the integral, and all the possible
configurations Sf for each f have been taken into account. The introduction of spin
foams is suggested by the need to evaluate each term of the sum,∫

∂g′=g

∏
e∈k0

dg′e
∏

f∈k0

CSf
ψSf (g′) (19)

where spin networks are better organized into surfaces. In fact, two spin networks belong
to the same unbranched surface Fi if they share only one edge, and if this edge is not
shared with any other spin network. The unbranched surfaces Fi either are disconnected,
or match other unbranched surfaces. In the latter case, the spin foam is defined as the
branched surface F = ∪iFi.
In order to evaluate (19), two non-trivial cases can be distinguished, i.e.,

1. two loops match on one edge, and they carry the same label : the unbranched
surface is defined as single-coloured;

2. more than two loops match on one edge, and Haar intertwiners ( a generalization
of inertwiner defined formerly) have to be introduced.

As a result, all the elements contribute to the sum as follows

1. for each vertex, a factor Av;

2. for each single-coloured component, a factor
∏

iAFi
, where AFi

∝ ∏
f∈fi

Cfρ and
Cfρ ∝ Csf

, the proportionality factor being a suitable power of dimVρ;

3. for each branching graph ΓF , the projection properties of the Haar intertwiners
have to be taken into account: as a result, for each vertex of the branching graph,
one has to sum over all the possible ways to assign an intertwiners to the links of
ΓF .

Collecting all the terms together, one obtains

Ω[g] =
∑
F⊂k

 ∏
v∈ΓF

Av

(∏
i

AFi

)
ψSf (g). (20)

The product ∏
f∈Fi

Cfρ (21)

in general depends on the discretization, and only in particular cases a geometrical
interpretation is possible.
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The insertion of (20) in (16) gives the final expression of the path integral Ω[φ]. If one
expands φ(g) in terms of the orthonormal basis of spin networks,

φ(g) =
∑

S∈B(∂k)

φSψS(g), (22)

(16) reads

Ω[φ] =
∑
F⊂k

 ∏
v∈ΓF

Av

(∏
i

AFi

)
φ∗SF

, (23)

i.e., the only non-vanishing contributions are brought by boundary spin networks, and
each spin-foam amplitude is weighted by the coefficient of the corresponding boundary
state. The comparison between the path-integral formulation (6) and (23) is eventually
accomplished by noticing that the integration over connection is replaced by the sum
over spin foams, and the spin-foam amplitudes wighted by the boundary functional φSF

play the role of the invariant measure and the exponential of the action, with a boundary
weighting coefficient φ(g).

Background independence The mismatch between the idea of background indepen-
dence and the geometrical interpretation of spin-foam models can be analyzed by con-
sidering two possibilities:

1. spin foams can be identified with the entire lattice, which plays the role of a discrete
space-time;

2. spin foams can be interpreted as lattice-independent geometrical objects, which
live on the lattice itself. The lattice, in this case, is considered as an auxiliary
field, which has to be removed in the definitive model.

In the second case, the amplitudes described in the initial model must depend on the
geometry of the spin foams only, i.e., in the sum

Ωk[φ] =
∑
F∈k

 ∏
v∈ΓF

Av

(∏
i

AFi

)
φ∗Sf

, (24)

each factor A depends on the branching graph only. The sum in (24) can be extended
to a background-independent sum over all the equivalence classes of spin foams F on a
given manifold M , i.e.,

∑
F∈k →

∑
F∈M , so that

Ωk[φ] =
∑

F∈M

 ∏
v∈ΓF

Av

(∏
i

AFi

)
φ∗Sf

, (25)

where abstract (or topological) spin foams are defined by means of abstract spin-network
states, the equivalence class of spin-networks states, invariant under homeomorphisms
of the boundaries. The extension (25) is possible only by the modification of the Hilbert
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space, as spin networks are not defined on the boundaries. ∂k. The new space of
boundary states H is defined as

H∂M =

{∑
i

aiSi : ai ∈ C, Si ⊂M,n ∈ N
}
, (26)

i.e., a finite combination of spin-network states, endowed with the structure of scalar
product

< S, S ′ >= δSS′ , (27)

for which the dual space H∗
∂M is defined, as usual, as

H∗
∂M = {φ} : H∂M → C. (28)

The definition of such a Hilbert space is followed by the problem of overcounting, due
to the homomorphisms h of the manifold M ,

h : M →M, A(h∗M) = A(M), φSh∗F
= φS−F , (29)

which can be gauged away á la Faddeev-Popov. The result is the definition of abstract
or topological spin foams, and the corresponding spin-network states are the equivalence
class of spin-network states invariant under homeomorphisms of the boundaries.

3 Spin networks and spin foams in qunatum gravity

Spin foams can be applied to covariant quantum gravity, where they play the role of the
path integral, as the tool that connects different gravity states (geometries) in time. In
particular, an equivalence class of 3-geometries i on a 3-d hypersurface Si is represented
by a spin-network state, and the history between two different states is the spin-foam
amplitude, i.e.,

< h2, S2|h1, S1 >=
∫

g/g(S1=h1),g/g(S2)=h2

DgeiIEH(g), (30)

where the measure Dg is aimed at outlining the conceptual analogy with Feynman’s
approach rather than at defining any specific integration measure, which will be explicitly
given, when needed, throughout the calculations.
Of course, the composition of spin foams must be defined, such that the transition
between two states is independent of the intermediate states among which the transition
is decomposed, i.e., in the sum

< h3, S3|h1, S1 >=
∑
h2

< h3, S3|h2, S2 >< h2, S2|h1, S1 >, (31)

the intermediate states 2 must carry a trivial representation, in the sense specified in
the previous paragraphs. As the probability of creating a state from the vacuum, a spin
foam is defined as

|h1, S1 >=
∫

g/g(S1)=h1

DgeiIEH(g). (32)
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Spin-network states in canonical quantum gravity Spin-network states can be de-
fined following a procedure which is slightly different from the previous one, in order
to realize how the geometrical properties of the state fit the constraints of the ADM
formulation [4].
In particular, the Gauss, diffeomorphism and Hamiltonian constraint are encoded in
the definition of the space of the physical states, annihilated by these constraints. The
characterization of the physical states will be achieved by adding requests, step by step,
on the properties of the general structures ( such as links and vertices) introduced in the
previous paragraphs.
The SU(2) Gauss constraint annihilates those states, called cylindrical functions, defined
in the Hilbert space Haux, endowed with an orthonormal basis, where linear combination
and inner product are defined. In particular, cylindrical functions are C0 functions on
the space of the connections, which can be made invariant under SU(2) transformations
by the choice of invariant intertwiners. Links that carry a representation of the SU(2)
group, vertices where links intersect, and intertwiner which map the operations in the
tensor product of the Hilbert spaces of the representations carried by the links define
the spin-network states.
The diffeomorphism constraint annihilates those states, called s-knots, which are ab-
stract spin-network states, defined in the Hilbert space Hdiff . The Hilbert space Hdiff

can be obtained from Haux by considering the invariance under diffeomorphisms. This
way, s-knots are invariant under both diffeomorphisms and SU(2) gauge transformations.

Spin foams and the Hamiltonian constraint In the canonical formulation, from a
quantum-mechanical point of view, the Hamiltonian operator HN, ~N(t), composed of the
Hamiltonian and the diffoemorphism constraint, HN, ~N(t) = C[N(t)] + C[ ~N(t)], can be
interpreted as the generator of quantum evolution from the initial hypersurface Σi(t = 0)
to the final hypersurface Σf (t = 1), parametrized by the proper time evolution U(T ),

U(T ) =
∫

T
dNd ~NUN, ~N =

∫
T
dNd ~Ne−i

∫ 1

0
dtH

N, ~N
(t). (33)

The evolution operator U(T ) encodes the dynamics of the gravitational field, and its
expansion in powers of T can be shown to be finite order by order. The calculation of
the matrix element of such an operator between two states of the gravitational field is
strictly analogous to that followed in the familiar calculation of the S-matrix elements
in a gauge theory, and reads explicitly

< sf |U(T )|si >=< sf |si > +(−iT )

∑
α∈si

Aα(si) < sf |Dα|si > +
∑

α∈sf

Aα(sf ) < sf |D+
α |si >

+

(34)

+
(−iT )2

2!

∑
α ∈ si

∑
α′∈s′

Aα(si)Aα′(s′) < sf |Dα′|s′ >< s′|Dα|si > +... (35)

Such a result can be obtained by splitting the calculation in several steps, i.e.,
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1. the evolution from the initial hypersurface to the final one is expressed as a sum
over intermediate hypersurfaces, as sketched in (31). The intermediate hyper-
surfaces differ by a small coordinate time, and the time evolution between two
hypersurfaces can be written in terms of the diffeomorphism that describes the
shift between them, so that UN, ~N = D(g)U ~N,0;

2. the expansion of U ~N,0 and the insertion of the identical projector where needed
leads to a sum, where, at each order n, the operator D acts n times. Its action on
the states is given by the coefficients A, which can be evaluated in terms of the
explicit form of the Hamiltonian constraint;

3. U(T ) can be worked out of U ~N,0 after integrating over the lapse and the shift. The
first integration follows directly, as the integrand does not depend on N , and the
second one corresponds to the implementation of the diffeomorphism constraint.

As a result, the matrix elements of the operator U read as (35), where generic spin-
network states have been substituted with the corresponding s-knots states. Analyzing
the geometrical meaning of the intermediate states, in which the sum has been split
up, allows one to recognize (35) as a sum over spin foams. In fact, the time evolution
of a generic surface si describes a ”cylinder”, whose time slicing are spin-network states
belonging to the same s-knot, unless any interaction occurs. When operating on such a
state, the Hamiltonian constraint generates a new state with one new edge and two new
vertices, i.e., this structure is the elementary interaction vertex of the theory, as suggested
by the comparison with ordinary gauge theories. As a generalization, the Hamiltonian
constraint acts adding one dimension to the spin-network state, and such a new direction
can be interpreted as time, because of the geometrical construction of (35), thus opening
the way for the interpretation of these new states as spin foams. In fact, at the n-th
order of sum, n new dimensions are added, and the sum can be written as the sum of
topologically inequivalent term, where the weight of each vertex is determined by the
coefficient of the Hamiltonian constraint. Furthermore, if the irreducible representation
of the gauge group carried by the edge of each spin network is taken into account during
the addition of the new vertices, the resulting geometrical objects fit the definition of
spin foams given in the previous paragraph, i.e., the implementation of the Hamiltonian
constraint leads naturally to the sum over spin foams.
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