riassunto2

MGAT3 - Theoretical Issues in GR

Speaker

Boehmer, Christian

Co-autors

Hakan Andreasson

Talk Title

Bounds on 2m/r for static objects with a positive cosmological constant

Abstract

We consider spherically symmetric static solutions of the Einstein equations with a positive cosmological constant $\Lambda,$ and we investigate the influence of $\Lambda$ on the bound of M/R, where M is the ADM mass and R is the area radius of the boundary of the static object. We find that for any solution which satisfies the energy condition $p+2p_{\perp}\leq\rho,$ where $p\geq 0$ and $p_{\perp}$ are the radial and tangential pressures respectively, and $\rho\geq 0$ is the energy density, and for which $0\leq \Lambda R^2\leq 1,$ the inequality M/R \leq 2/9 - \Lambda R^2 /3 + 2/9 \sqrt{1+3\Lambda R^2}, holds. If $\Lambda=0$ it is known that infinitely thin shell solutions uniquely saturate the inequality, i.e. the inequality is sharp in that case. The situation is quite different if $\Lambda>0.$ Indeed, we show that infinitely thin shell solutions do not generally saturate the inequality except in the two degenerate situations $\Lambda R^2=0$ and $\Lambda R^2=1$. In the latter situation there is also a constant density solution, where the exterior spacetime is the Nariai solution, which saturates the inequality, hence, the saturating solution is non-unique. In this case the cosmological horizon and the black hole horizon coincide. This is analogous to the charged situation where there is numerical evidence that uniqueness of the saturating solution is lost when the inner and outer horizons of the Reissner-Nordstr\"{o}m solution coincide. We also apply the inequality to the Virgo cluster and obtain an upper bound for $\Lambda$ from real observational data.

Talk view

 

Back to previous page