1

Scalar-Gauss-Bonnet Theories: Evasion of No-Hair Theorems and Novel Black-Hole Solutions

Panagiota Kanti

Department of Physics, University of Ioannina, Ioannina GR-45110, Greece E-mail: pkanti@cc.uoi.gr

We consider a general Einstein-scalar-GB theory with a coupling function $f(\phi)$. We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically-flat solution may be easily constructed under mild assumptions for $f(\phi)$. We show that the no-hair theorems are easily evaded, and a large number of regular, black-hole solutions with scalar hair are then presented for a plethora of coupling functions $f(\phi)$.

Keywords: Modified theories; Gauss-Bonnet term; No-Hair theorems; novel black holes

The existence or not of black holes associated with a non-trivial scalar field in the exterior region has attracted the attention of researchers over a period of many decades. The *no-hair theorem*¹, that excluded static black holes with a scalar field, was outdated by the discovery of black holes with Yang-Mills², Skyrme fields³ or conformally-coupled scalar fields⁴. The novel no-hair theorem⁵ (for more recent analyses, see⁶⁻⁸) was also shown to be evaded in the context of the Einstein-Dilaton-Gauss-Bonnet theory⁹ and in shift-symmetric Galileon theories^{10,11}.

Here, we consider a wide class of gravitational theories where the scalar field has a general coupling $f(\phi)$ to the Gauss-Bonnet (GB) term $R_{GB}^2 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$. In¹², we demonstrated that the above theory evades the no-hair theorems and that black-hole solutions, with a regular horizon and an asymptotically-flat limit, may be constructed under mild only constraints on the coupling function $f(\phi)$. We then determined¹² the characteristics of those black-hole solutions such as the horizon area, scalar charge and entropy. The proposed presentation is based on these two works.

We thus consider the following generalised gravitational theory

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} \partial_\mu \phi \,\partial^\mu \phi + f(\phi) R_{GB}^2 \right]. \tag{1}$$

The gravitational field equations and the equation for the scalar field have the covariant form:

$$G_{\mu\nu} = T_{\mu\nu}, \qquad \nabla^2 \phi + \dot{f}(\phi) R_{GB}^2 = 0,$$
 (2)

where a dot denotes the derivative with respect to the scalar field. The energymomentum tensor has the form

$$T_{\mu\nu} = -\frac{1}{4}g_{\mu\nu}\partial_{\rho}\phi\partial^{\rho}\phi + \frac{1}{2}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}(g_{\rho\mu}g_{\lambda\nu} + g_{\lambda\mu}g_{\rho\nu})\eta^{\kappa\lambda\alpha\beta}\tilde{R}^{\rho\gamma}{}_{\alpha\beta}\nabla_{\gamma}\partial_{\kappa}f, (3)$$

with $\tilde{R}^{\rho\gamma}{}_{\alpha\beta} = \eta^{\rho\gamma\sigma\tau} R_{\sigma\tau\alpha\beta} = \epsilon^{\rho\gamma\sigma\tau} R_{\sigma\tau\alpha\beta} / \sqrt{-g}$. In the context of the above theory,

$\mathbf{2}$

we seek spherically-symmetric solutions, with a line-element

$$ds^{2} = -e^{A(r)}dt^{2} + e^{B(r)}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}), \qquad (4)$$

that describe regular, static, asymptotically-flat black holes. By employing the line-element (4), the Einstein's equations take the explicit form

$$4e^{B}(e^{B} + rB' - 1) = \phi'^{2} [r^{2}e^{B} + 16\ddot{f}(e^{B} - 1)] -8\dot{f} [B'\phi'(e^{B} - 3) - 2\phi''(e^{B} - 1)],$$
(5)

$$4e^{B}(e^{B} - rA' - 1) = -\phi'^{2}r^{2}e^{B} + 8(e^{B} - 3)\dot{f}A'\phi', \qquad (6)$$

$$e^{B} \left[rA'^{2} - 2B' + A'(2 - rB') + 2rA'' \right] = -\phi'^{2} re^{B}$$

$$+8\phi'^{2}fA' + 4f[\phi'(A'^{2} + 2A'') + A'(2\phi'' - 3B'\phi')],$$
(7)

while the scalar equation reads

$$2r\phi'' + (4 + rA' - rB')\phi' + \frac{4fe^{-B}}{r} \left[(e^B - 3)A'B' - (e^B - 1)(2A'' + A'^2) \right] = 0.(8)$$

In the above, the prime denotes differentiation with respect to r – throughout this work, we assume that the scalar field shares the symmetries of the spacetime.

Equation (6) may be algebraically solved to determine the function e^B . Then, the remaining field equations reduce to a system of two independent, ordinary differential equations of second order for the functions A and ϕ :

$$A'' = \frac{P}{S}, \qquad \phi'' = \frac{Q}{S}, \qquad (9)$$

where the functions P, Q and S are lengthy expressions of $(r, \phi', A', \dot{f}, \ddot{f})$.

7

For a spherically-symmetric spacetime, the presence of a regular horizon is realised for $e^A \to 0$, while ϕ , ϕ' and ϕ'' remain finite, as $r \to r_h$. Demanding the above, the 2nd of Eqs. (9) yields the constraint

$$\phi'_{h} = \frac{r_{h}}{4\dot{f}_{h}} \left(-1 \pm \sqrt{1 - \frac{96\dot{f}_{h}^{2}}{r_{h}^{4}}} \right), \tag{10}$$

where the additional bound $\dot{f}_h^2 < r_h^4/96$ should hold. Then, employing the above, the 1st of Eqs. (9) determines the form of A', leading to the near-horizon solution

$$e^{A} = a_{1}(r - r_{h}) + \dots, \qquad e^{-B} = b_{1}(r - r_{h}) + \dots,$$

$$\phi = \phi_{h} + \phi_{h}'(r - r_{h}) + \phi_{h}''(r - r_{h})^{2} + \dots.$$
(11)

At asymptotic infinity, on the other hand, assuming power-law expressions for the metric functions and scalar field, and substituting in the field equations, we obtain

$$e^{A} = 1 - \frac{2M}{r} + \frac{MD^{2}}{12r^{3}} + \dots, \quad e^{B} = 1 + \frac{2M}{r} + \frac{16M^{2} - D^{2}}{4r^{2}} + \dots,$$

$$\phi = \phi_{\infty} + \frac{D}{r} + \frac{MD}{r^{2}} + \frac{32M^{2}D - D^{3}}{24r^{3}} + \dots.$$
(12)

3

in terms of the ADM mass M and scalar charge D. Therefore, a general coupling function $f(\phi)$ for the scalar field does not interfere with the existence of either a regular horizon or an asymptotically-flat limit for the spacetime (4).

Can the above two asymptotic solutions be smoothly matched for a complete black-hole solution to emerge? The no-hair theorem⁵ forbids the existence of such a solution in the context of a wide class of scalar-tensor theories. Its applicability is based on the following assumptions: first, at asymptotic infinity, the T_r^r component of the energy-momentum tensor, that has the form

$$T_{r}^{r} = \frac{e^{-B}\phi'}{4} \Big[\phi' - \frac{8e^{-B}\left(e^{B} - 3\right)\dot{f}A'}{r^{2}}\Big],\tag{13}$$

is positive and decreasing: indeed, using the asymptotic expansions (12), we find that $T_r^r \simeq \phi'^2/4 \sim \mathcal{O}(1/r^4)$. Second, in the near-horizon regime, T_r^r should be negative and increasing⁵. However, employing the asymptotic solution (11), we find that in our case

$$T^{r}_{\ r} = -\frac{2e^{-B}}{r^{2}}A'\phi'\dot{f} + \mathcal{O}(r-r_{h}).$$
(14)

The above expression is positive-definite since, close to the horizon, A' > 0, and $\dot{f} \phi' < 0$ according to Eq. (10) for a regular horizon. We also find that, in our case, T_r^r is in fact always decreasing close to r_h for every solution we have found, therefore, the novel no-hair theorem is non-applicable in our theory.

In order to demonstrate the validity of the aforementioned arguments, we have numerically solved the system of equations (9), and produced a large number of black-hole solutions with scalar hair. The scalar field and profile of T_r^r are depicted in Fig. 1, for a variety of forms of the coupling function $f(\phi)$: exponential, odd and even power-law, odd and even inverse-power-law. In all cases, for a given value of ϕ_h , Eq. (10) uniquely determines the quantity ϕ'_h . The integration of the system (9) with initial conditions (ϕ_h, ϕ'_h) then leads to the presented solutions.

We have also studied ¹² in detail the characteristics of the black-hole solutions, and in Fig. 2 we present the indicative case of $f(\phi) = \alpha/\phi$. The scalar charge has a

Fig. 1. The scalar field ϕ (left plot) and the T_r^r component (right plot) for different coupling functions $f(\phi)$, for a = 0.01 and $\phi_h = 1$.

Fig. 2. The scalar charge D (left plot), and the ratios A_h/A_{Sch} and S_h/S_{Sch} (right plot, lower and upper curve respectively) in terms of the mass M, for $f(\phi) = \alpha/\phi$.

monotonic dependence on the mass M while its horizon area is always smaller than the one of the Schwarzschild solution exhibiting also a lower value beyond which the black hole ceases to exist. Its entropy is larger than that of the Schwarzschild case and thus thermodynamically more stable. Other classes of solutions exhibit a variety of characteristics. In all cases, however, our analysis clearly demonstrates that the presence of the GB term in a scalar-tensor theory leads to the emergence of novel families of black holes with scalar hair.

References

- J. D. Bekenstein, Phys. Rev. Lett. 28 (1972) 452; C. Teitelboim, Lett. Nuovo Cim. 3S2 (1972) 397.
- M. S. Volkov and D. V. Galtsov, JETP Lett. **50** (1989) 346; P. Bizon, Phys. Rev. Lett. **64** (1990) 2844; B. R. Greene, S. D. Mathur and C. M. O'Neill, Phys. Rev. D **47** (1993) 2242; K. I. Maeda, T. Tachizawa, T. Torii and T. Maki, Phys. Rev. Lett. **72** (1994) 450.
- H. Luckock and I. Moss, Phys. Lett. B 176 (1986) 341; S. Droz, M. Heusler and N. Straumann, Phys. Lett. B 268 (1991) 371.
- 4. J. D. Bekenstein, Annals Phys. 82 (1974) 535; Annals Phys. 91 (1975) 75.
- 5. J. D. Bekenstein, Phys. Rev. D 51 (1995) no.12, R6608.
- 6. C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24 (2015) no.09, 1542014.
- 7. T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108 (2012) 081103.
- 8. L. Hui and A. Nicolis, Phys. Rev. Lett. 110 (2013) 241104.
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, Phys. Rev. D 54 (1996) 5049; Phys. Rev. D 57 (1998) 6255.
- 10. E. Babichev and C. Charmousis, JHEP 1408 (2014) 106.
- T. P. Sotiriou and S. Y. Zhou, Phys. Rev. Lett. **112** (2014) 251102; Phys. Rev. D **90** (2014) 124063.
- G. Antoniou, A. Bakopoulos and P. Kanti, Phys. Rev. Lett. **120** (2018) no.13, 131102; arXiv:1711.07431 [hep-th], to appear in Phys. Rev. D.