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We consider a general Einstein-scalar-GB theory with a coupling function f(φ). We
demonstrate that black-hole solutions appear as a generic feature of this theory since

a regular horizon and an asymptotically-flat solution may be easily constructed under

mild assumptions for f(φ). We show that the no-hair theorems are easily evaded, and
a large number of regular, black-hole solutions with scalar hair are then presented for a

plethora of coupling functions f(φ).
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The existence or not of black holes associated with a non-trivial scalar field

in the exterior region has attracted the attention of researchers over a period of

many decades. The no-hair theorem1, that excluded static black holes with a scalar

field, was outdated by the discovery of black holes with Yang-Mills2, Skyrme fields3

or conformally-coupled scalar fields4. The novel no-hair theorem5 (for more recent

analyses, see6–8) was also shown to be evaded in the context of the Einstein-Dilaton-

Gauss-Bonnet theory9 and in shift-symmetric Galileon theories10,11.

Here, we consider a wide class of gravitational theories where the scalar field

has a general coupling f(φ) to the Gauss-Bonnet (GB) term R2
GB = RµνρσR

µνρσ −
4RµνR

µν+R2. In12, we demonstrated that the above theory evades the no-hair the-

orems and that black-hole solutions, with a regular horizon and an asymptotically-

flat limit, may be constructed under mild only constraints on the coupling function

f(φ). We then determined12 the characteristics of those black-hole solutions such

as the horizon area, scalar charge and entropy. The proposed presentation is based

on these two works.

We thus consider the following generalised gravitational theory

S =
1

16π

∫
d4x
√
−g
[
R− 1

2
∂µφ∂

µφ+ f(φ)R2
GB

]
. (1)

The gravitational field equations and the equation for the scalar field have the

covariant form:

Gµν = Tµν , ∇2φ+ ḟ(φ)R2
GB = 0 , (2)

where a dot denotes the derivative with respect to the scalar field. The energy-

momentum tensor has the form

Tµν = −1

4
gµν∂ρφ∂

ρφ+
1

2
∂µφ∂νφ−

1

2
(gρµgλν + gλµgρν)ηκλαβR̃ργ αβ∇γ∂κf, (3)

with R̃ργ αβ = ηργστRσταβ = εργστRσταβ/
√
−g. In the context of the above theory,
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we seek spherically-symmetric solutions, with a line-element

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θ dϕ2) , (4)

that describe regular, static, asymptotically-flat black holes. By employing the

line-element (4), the Einstein’s equations take the explicit form

4eB(eB + rB′ − 1) = φ′2
[
r2eB + 16f̈(eB − 1)

]
−8ḟ

[
B′φ′(eB − 3)− 2φ′′(eB − 1)

]
, (5)

4eB(eB − rA′ − 1) = −φ′2r2eB + 8
(
eB − 3

)
ḟA′φ′, (6)

eB
[
rA′

2 − 2B′ +A′(2− rB′) + 2rA′′
]

= −φ′2reB

+8φ′2f̈A′ + 4ḟ [φ′(A′2 + 2A′′) +A′(2φ′′ − 3B′φ′)], (7)

while the scalar equation reads

2rφ′′ + (4 + rA′ − rB′)φ′ + 4ḟ e−B

r

[
(eB − 3)A′B′ − (eB − 1)(2A′′ +A′2)

]
= 0.(8)

In the above, the prime denotes differentiation with respect to r – throughout this

work, we assume that the scalar field shares the symmetries of the spacetime.

Equation (6) may be algebraically solved to determine the function eB . Then,

the remaining field equations reduce to a system of two independent, ordinary dif-

ferential equations of second order for the functions A and φ:

A′′ =
P

S
, φ′′ =

Q

S
, (9)

where the functions P , Q and S are lengthy expressions of (r, φ′, A′, ḟ , f̈).

For a spherically-symmetric spacetime, the presence of a regular horizon is re-

alised for eA → 0, while φ, φ′ and φ′′ remain finite, as r → rh. Demanding the

above, the 2nd of Eqs. (9) yields the constraint

φ′h =
rh

4ḟh

−1±

√
1−

96ḟ2h
r4h

 , (10)

where the additional bound ḟ2h < r4h/96 should hold. Then, employing the above,

the 1st of Eqs. (9) determines the form of A′, leading to the near-horizon solution

eA = a1(r − rh) + ... , e−B = b1(r − rh) + ... ,

φ = φh + φ′h(r − rh) + φ′′h(r − rh)2 + ... . (11)

At asymptotic infinity, on the other hand, assuming power-law expressions for the

metric functions and scalar field, and substituting in the field equations, we obtain

eA = 1− 2M

r
+
MD2

12r3
+ ... , eB = 1 +

2M

r
+

16M2 −D2

4r2
+ ... ,

φ = φ∞ +
D

r
+
MD

r2
+

32M2D −D3

24r3
+ ... . (12)
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in terms of the ADM mass M and scalar charge D. Therefore, a general coupling

function f(φ) for the scalar field does not interfere with the existence of either a

regular horizon or an asymptotically-flat limit for the spacetime (4).

Can the above two asymptotic solutions be smoothly matched for a complete

black-hole solution to emerge? The no-hair theorem5 forbids the existence of such

a solution in the context of a wide class of scalar-tensor theories. Its applicability is

based on the following assumptions: first, at asymptotic infinity, the T rr component

of the energy-momentum tensor, that has the form

T rr =
e−Bφ′

4

[
φ′ −

8e−B
(
eB − 3

)
ḟA′

r2

]
, (13)

is positive and decreasing: indeed, using the asymptotic expansions (12), we find

that T rr ' φ′2/4 ∼ O(1/r4). Second, in the near-horizon regime, T rr should be

negative and increasing5. However, employing the asymptotic solution (11), we

find that in our case

T rr = −2e−B

r2
A′φ′ḟ +O(r − rh) . (14)

The above expression is positive-definite since, close to the horizon, A′ > 0, and

ḟ φ′ < 0 according to Eq. (10) for a regular horizon. We also find that, in our

case, T rr is in fact always decreasing close to rh for every solution we have found,

therefore, the novel no-hair theorem is non-applicable in our theory.

In order to demonstrate the validity of the aforementioned arguments, we have

numerically solved the system of equations (9), and produced a large number of

black-hole solutions with scalar hair. The scalar field and profile of T rr are depicted

in Fig. 1, for a variety of forms of the coupling function f(φ): exponential, odd and

even power-law, odd and even inverse-power-law. In all cases, for a given value of

φh, Eq. (10) uniquely determines the quantity φ′h. The integration of the system

(9) with initial conditions (φh, φ
′
h) then leads to the presented solutions.

We have also studied12 in detail the characteristics of the black-hole solutions,

and in Fig. 2 we present the indicative case of f(φ) = α/φ. The scalar charge has a
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Fig. 1. The scalar field φ (left plot) and the T r
r component (right plot) for different coupling

functions f(φ), for a = 0.01 and φh = 1.
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Fig. 2. The scalar charge D (left plot), and the ratios Ah/ASch and Sh/SSch (right plot, lower
and upper curve respectively) in terms of the mass M , for f(φ) = α/φ.

monotonic dependence on the mass M while its horizon area is always smaller than

the one of the Schwarzschild solution exhibiting also a lower value beyond which

the black hole ceases to exist. Its entropy is larger than that of the Schwarzschild

case and thus thermodynamically more stable. Other classes of solutions exhibit a

variety of characteristics. In all cases, however, our analysis clearly demonstrates

that the presence of the GB term in a scalar-tensor theory leads to the emergence

of novel families of black holes with scalar hair.
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