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We construct a two-dimensional action that is an extension of spherically symmetric

Lovelock gravity. In spite that the action contains arbitrary functions of the areal radius
and the norm squared of its gradient, the field equations are second order and obey

the Birkhoff’s theorem. Similar to the spherically symmetric Lovelock gravity, the field

equations admit the generalized Misner-Sharp mass that determines the form of the
vacuum solution. The arbitrary functions in the action allow for vacuum solutions that

describe a larger class of nonsingular black-hole spacetimes than previously available.
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1. 2D effective actions for spherically symmetric spacetimes

The metric for n(≥ 3)-dimensional spherically symmetric spacetimes is given by

ds2(n) =gµν(x)dx
µdxν

=ḡAB(y)dy
AdyB +R(y)2dΩ2

(n−2), (1)

where ḡAB(y) (A,B = 0, 1) is the general two-dimensional (2D) Lorentzian metric,

dΩ2
(n−2) is the line-element on the unit (n− 2)-sphere, and R is the areal radius.

After imposing spherical symmetry and integrating out the angular variables,

the general n(≥ 3)-dimensional gravitational action,

In =
1

16πG(n)

∫
dnx

√
−gL(R,Rµν ,Rµνρσ), (2)

reduces to a 2D effective action. The variation of this effective 2D action will give

the same equations of motion for the original action (2)1–3.

We adopt units such that c = ℏ = 1 and G(n) denotes the n-dimensional grav-

itational constant. In the following, DA and R[ḡ] denote the covariant deriva-

tive and the Ricci scalar with respect to ḡAB , respectively. We also define

(DR)2 := (DAR)(DAR) and a length parameter l proportional to the Planck length

as ln−2 := 16πG(n)/A(n−2), where A(n−2) is the volume of a unit (n − 2)-sphere.

The complete analysis for the results presented here is available in Ref. 4.
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1.1. Effective 2D action for Einstein gravity and its generalization

The Einstein-Hilbert action for general relativity corresponds to L = R in the action

(2) and its effective 2D action takes the form

IEH(2) =
1

ln−2

∫
d2y

√
−ḡ

{
Rn−2R[ḡ]

+ (n− 2)(n− 3)Rn−4(DR)2 + (n− 2)(n− 3)Rn−4
}
. (3)

By the Birkhoff’s theorem, the unique vacuum solution with spherical symmetry is

the well-known Schwarzschild-Tangherlini solution.

A natural way to generalize the spherically symmetric action (3) in Einstein

gravity is the following 2D dilaton gravity:

I(2) =
1

ln−2

∫
d2y

√
−ḡ

{
ϕ(R)R[ḡ] + h(R)(DR)2 + V (R)

}
, (4)

where ϕ(R), h(R), and V (R) are arbitrary functions of a scalar field R. (See Ref. 5

for a review on this class of 2D gravity.) This standard 2D dilaton gravity theory

(4) obeys the Birkhoff’s theorem6. Namely, the general vacuum solution has the

following form:

ds2 = −f(R)dt2 + f(R)−1dR2. (5)

If one chooses h(R) = V (R) = ϕ,RR(R), the metric function is given by

f(R) =1− ln−2M

j(R)
,

(
j(R) :=

∫
V (R)dR

)
. (6)

Especially, in the case with n = 4 and ϕ,R = j(R) = (R2+l2)3/2/R2, the general

vacuum solution is the well-known Bardeen metric7:

ds2(4) = −
(
1− l2MR2

(R2 + l2)3/2

)
dt2 +

(
1− l2MR2

(R2 + l2)3/2

)−1

dR2 +R2dΩ2
(2). (7)

The Bardeen spacetime (7) is certainly nonsingular everywhere, however, this class

of nonsingular black holes are considered to be unphysical. This is because the met-

ric (7) violates the limiting curvature conjecture, which asserts that the curvature

invariants are bounded by some fundamental value in a viable fundamental theory8.

In fact, to the best of our knowledge, this limiting curvature condition cannot be

fulfilled within the framework of the action for pure 2D dilaton gravity (4). This is

the main reason why we consider a more general class of 2D dilaton gravity.

1.2. Effective 2D action for Lovelock gravity and its generalization

Lovelock gravity is a natural generalization of general relativity in arbitrary di-

mensions as a second-order quasilinear theory of gravity9. The second-order field

equations ensure the ghost-free nature of the theory and Lovelock gravity reduces

to general relativity with a cosmological constant in four dimensions.
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In the action (2), Lovelock gravity in vacuum corresponds to

L =

[n/2]∑
p=0

2−pα(p)δ
µ1···µpν1···νp
ρ1···ρpσ1···σpR ρ1σ1

µ1ν1
· · ·R ρpσp

µpνp
, (8)

where δ
µ1···µp
ρ1···ρp := p!δµ1

[ρ1
· · · δµp

ρp]
, and its effective 2D action was obtained10,11 as

IL(2) =
1

ln−2

∫
d2y

√
−ḡRn−2

[n/2]∑
p=0

(n− 2)!

(n− 2p)!
α(p)

×

[
pR[ḡ]R2−2p + (n− 2p)(n− 2p− 1)

{
(1− Z)

p
+ 2pZ

}
R−2p

+ p(n− 2p)R1−2p

{
1− (1− Z)p−1

}
(DAR)

(DAZ)

Z

]
, (9)

where we have defined Z := (DR)2. The Birkhoff’s theorem in Lovelock gravity

shows that, under several technical assumptions, the unique vacuum solution is

given by the Schwarzschild-Tangherlini-type solution12,13.

In analogy with the action (4), we now propose4 the following natural extension

of the spherically symmetric Lovelock action (9)

IXL =
1

ln−2

∫
d2y

√
−ḡ

{
ϕ(R)R[ḡ] + η(R,Z) + χ(R,Z)(DAR)

(DAZ)

Z

}
, (10)

where η(R,Z) and χ(R,Z) are as yet arbitrary functions of a scalar field R and Z.

For any given ϕ(R) and χ(R,Z), one can choose the function η(R,Z) as

ϕ,RR = η,Z − χ,R, (11)

where a comma denotes the partial derivative, so that the field equations obey the

Birkhoff’s theorem for Z = (DR)2 ̸= 0 and χ−ϕ,R ̸= 0. Then the resulting general

vacuum solution has the following form:

ds2 =− f(R)dt2 + f(R)−1dR2. (12)

Actually, the condition (11) ensures the existence of the generalized Misner-Sharp

mass which satisfies the unified first law. Under the condition (11), the existence of

Minkowski vacuum requires

η(R, 1) = 2ϕ,RR. (13)

2. Designing nonsingular black holes

Now we show how to construct specific nonsingular black holes as exact solutions by

making appropriate choices for the functions in the action (10). We are interested in

constructing nonsingular black holes that satisfy the limiting curvature condition,

namely curvature invariants are everywhere bounded for arbitrarily large M .
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Such an example is the following Hayward nonsingular black hole14:

f(R) = 1− l2MR2

R3 + l4M
, (14)

of which generalization in n dimensions is given by4

f(R) = 1− ln−2MR2

Rn−1 + lnM
. (15)

This n-dimensional Hayward black hole (15) is the unique vacuum solution in the

theory with

η(R,Z) = 2ϕ,RRZ +
(n− 3)ln−2Rn(1− Z)− (n− 1)lnRn−2(1− Z)2

{ln−2R2 − ln(1− Z)}2
,

χ(R,Z) = ϕ,R − ln−2Rn+1

{ln−2R2 − ln(1− Z)}2
. (16)

Also, the following Bardeen-type nonsingular black hole4

f(R) = 1− ln−2MR2

(R2 +M2/(n−1)l2n/(n−1))(n−1)/2
(17)

or new nonsingular black hole4

f(R) = 1 +
Rn+1

2ln+2M

(
1−

√
1 +

4l2nM2

R2(n−1)

)
(18)

can be the unique vacuum solution in the theory with a suitable choice of η(R,Z)

and χ(R,Z).
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