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Abstract

Unimodular quantum cosmology admits wavepacket solutions that
evolve according to a kind of Schrödinger equation. Though this theory is
equivalent to general relativity on the classical level, its canonical struc-
ture is different and the problem of time does not occur. We present an
Ehrenfest theorem for the long term evolution of the expectation value of
the scale factor for a spatially flat Friedmann universe with a scalar field.
We find that the classical and the quantum behaviour in the asymptotic
future coincide for the special case of a massless scalar field. We examine
the general behaviour of the uncertainty of the scale factor in order to
single out models that can lead to a classical universe.

1 Introduction

The canonical quantization of general relativity leads to the so-called problem
of time (see [1] and references therein). In most non-perturbative approaches of
quantum gravity time has disappeared from the theory and is seen as an artifact
of the classical limit. Here we investigate quantum cosmology in the framework
of unimodular gravity. This theory is practically equivalent to general relativity
at the classical level, but since it has a different canonical structure time does not
disappear from the quantum theory ([2]) and it is possible to study the evolution
of wave packet solutions and the behaviour of expectation values compared to
the classical evolution of their counter parts.

In ([3]) we constructed a class of unitarily evolving solutions with a neg-
ative expectation value of the Hamiltonian for the special case of a spatially
flat universe with a massless scalar field. Investigating a special example, we
found that the classical and quantum dynamics of the scale factor coincide for
the asymptotic future (though with significant spread). Here we compare the
expectation value of the scale factor to the evolution of its classical counterpart
for solutions of the spatially flat Friedmann universe with an arbitrary scalar
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field which yields Ehrenfest theorem for the late time behaviour. We examine
the evolution of the uncertainty of the scale factor in order to single out models
that can lead to a classical universe in the asymptotic future.

2 About Unimodular Gravity

We start with the Einstein Hilbert action (1)

SEH =
1

2κ

∫
M
d4x
√
−g (R− 2Λ)− 1

κ

∫
∂M

d3x
√
hK , (1)

where

κ =
8πG

c4

contains the velocity of light c and the gravitational constant G. We also take
into account the matter action Sm that describes the fields. If we vary the action
S = Sm + SEH with respect to the metric gµν under the restriction −g = 1, we
obtain Einsteins equations with an arbitrary additional constant Λ , that can
be identified with the cosmological constant of general relativity ([2]).

Rµν −
1

2
gµνR = κTµν − Λ gµν (2a)

√
−g − 1 = 0 . (2b)

This theory is called unimodular gravity. Any solution of unimodular gravity
(2) is also a solution of general relativity for a specific cosmological constant and
vice versa. The only difference between the two theories is, that Λ is a natural
constant in general relativity while it is a conserved quantity in unimodular
gravity. But since in both theories the cosmological constant can not vary over
the whole universe, we would have to investigate different universes to determine
if solutions with different Λ exist (unimodular theory) or if Λ is a ”true” natural
constant. So the two theories are practically indistinguishable. Nevertheless
the canonical structure of the theories differs ([2])and therefor the quantization
of unimodular theory yields different results compared to the quantization of
general relativity ([4]).

3 The Unimodular Hamiltonian of a spatially
flat Friedmann Universe

The metric of a homogeneous and isotropic spacetime (Friedmann universe)

ds2 = −N2(t)c2dt2 + a2(t)dΩ2
3 (3)

is characterized by the lapse function N(t) and the scale factor a(t). If the
spatial curvature is zero, dΩ2

3 is the line element of three-dimensional flat space.
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Inserting the metric into the Einstein-Hilbert action (1) with Λ = 0 yields
([1])

SEH =
3

κ

∫
dtN

(
− ȧ2a

c2N2

)
v0 ,

where v0 is is the volume of the spacelike slices according to (3).
The action of a scalar field in a Friedmann universe (3) reads

Sm =

∫
dtNa3

(
φ̇2

2N2c2
− V (φ)

)
v0 . (4)

Using the unimodular condition for the lapse function N = a−3, we find for
the Hamiltonian ([3])

of the unimodular theory

Huni =
c2

2

p2φ
a6
− c2

4ε

p2a
a4

+ V (φ) (5)

The Hamiltonian is a conserved quantity and not a constraint as in general
relativity

The canonical quantization of this Hamiltonian yields

p̂a = −i~ ∂
∂a

, p̂φ = −i~ ∂

∂φ
, (6)

Ĥ =
~2c2

4ε

1

a5
∂

∂a
a
∂

∂a
− ~2c2

2

1

a6
∂2

∂φ2
+ V (φ) .

Here we have chosen the factor ordering that gives the part of the Hamilto-
nian that is quadratic in the momenta the form of a Laplace Beltrami operator
([1])

The evolution of the wavefunction ψ(a, φ, t) is determined by

Ĥψ = i~
∂

∂t
ψ . (7)

The Hamiltonian is symmetric with respect to the inner product defined by the
measure a5dadφ, where a ∈ (0,∞) and φ ∈ (−∞,∞).

Applying the coordinate transformations

A = a3/3 B =
3√
2ε
φ , (8)

and
u = Ae−B v = AeB . (9)

We obtain the Hamilton operator

Ĥ =
~2c2

ε

∂2

∂u∂v
+ V

(u
v

)
(10)
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The volume element is given by dudv and u ∈ (0,∞), v ∈ (0,∞).
The classical unimodular Hamiltonian then reads

H = −c
2

ε
pu pv + V

(u
v

)
.

4 General properties of the time evolution

In [3] we have derived a class of unitarily evolving wavepacket solutions of (7)
for the special case of a massless scalar field (V = 0). We found that these
solutions fulfill in the late phase of time evolution

lim
t→∞

ψ(0, v, t) = lim
t→∞

ψ(u, 0, t) = 0 . (11)

Now we assume that a wavepacket solution for a general scalar field can be
found and that it also fulfills (11). We investigate the physical behaviour of
these solutions compared to the evolution of the classical quantities.

As in ordinary quantum mechanics, the evolution of the expectation values of
an observable Ô with respect to a solution ψ(u, v, t) of the Schrödinger equation
(7) is given by

d

dt
〈ψ|Ô|ψ〉 = − i

~

(
〈ψ|ÔĤ|ψ〉 − 〈Ĥψ|Ôψ〉

)
. (12)

This implies the equation

d

dt
〈ψ|Ô|ψ〉 = − i

~

〈
ψ
[
Ô, Ĥ

]
ψ
〉
, (13)

only if Ôψ obeys

〈Ĥψ|Ôψ〉 !
= 〈ψ|ĤÔ|ψ〉 . (14)

In the case of our model (10), this condition reads∫ ∞
0

ψ∗(u, v, t)
∂

∂v
Ôψ(u, v, t)dv

∣∣∣
u=0
−
∫ ∞
0

(
∂

∂u
ψ∗(u, v, t)

)
Ôψ(u, v, t)du

∣∣∣
v=0

= 0 .

(15)
We find that this condition is fulfilled in the limit t → ∞ for wavepackets
with the property (11). This means that the time evolution that we derive by
the application of (13), gives the correct result for the limit t → ∞, and is
approximately valid in the late phase of time evolution.

We find for the variable uv, related to the scalefactor by

A2 = uv =
a6

9
,

lim
t→∞

d2

dt2
〈A2〉 =

c2

ε

〈
−2 Ĥ + V + u

∂V

∂u
+ v

∂V

∂v

〉
, (16a)
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whereas the classical time evolution reads

lim
t→∞

d2

dt2
A2 =

c2

ε

(
−2H + V + u

∂V

∂u
+ v

∂V

∂v

)
. (16b)

So we see that in the special case of a massless scalar field the late time behaviour
of the classical scalefactor and its expectation value according to unimodular
quantum cosmology are the same. In general (16) represents the Ehrenfest
theorem for unimodular quantum cosmology.

The result for the uncertainty ∆(A2) in the special case of a massless scalar
field reads

lim
t→∞

d4

dt4
(∆(A2))2 =

24c2

ε2
(∆H)2 ,

which implies that the uncertainty ∆(A2) is monotonically growing with t2 in
the late phase of time evolution.

We have already first results of the evolution of the uncertainties for general
scalar fields and are formulating conditions for models that yield a more and
more classical universe in the asymptotic future. Work in progress!
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