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It is known that one can formulate an action in teleparallel gravity which is equivalent to
general relativity, up to a boundary term. In this geometry we have vanishing curvature,

and non-vanishing torsion. The action is constructed by three different contractions of

torsion with specific coefficients. By allowing these coefficients to be arbitrary we get
the theory which is called ”new general relativity”. The Lagrangian for new general

relativity is is written down in ADM-variables. In order to write down the Hamiltonian

we need to invert the velocities to canonical variables. However, the inversion depends
on the specific combination of constraints satisfied by the theory (which depends on the

coefficients in the Lagrangian). It is found that one can combine these constraints in

9 different ways to obtain non-trivial theories, each with a different inversion formula.
The teleparallel equivalent to general relativity gives 2 degrees of freedom. However, this

number does not hold for arbitrary coefficients.
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1. Conventions

Greek indices denote global coordinate indices running from 0 to 3, small latin

indices are spatial coordinate indices running from 1 to 3, whereas capital latin

indices denote Lorentz indices running from 0 to 3. Whenever we put a bullet on

top of an object we emphasize that we are in a teleparallel geometry. We are always

dealing with Lorentzian metrics.

2. Introduction

Gravity is normally described as a theory on a pseudo-Riemannian manifold. This

means that spacetime is curved, with Lorentzian metric, torsion-free connection and

that the covariant derivative of the metric is zero. However, there are equivalent

theories to general relativity. I will focus on teleparallel gravity where we have

vanishing curvature, but non-vanishing torsion.

In particular I will perform the Hamiltonian analysis of ”new general relativity”.

Previous work on the Hamiltonian analysis on teleparallel gravity theories have been

performed in1–13. However, the full Hamiltonian analysis of new general relatvity

has not been performed. New general relativity is described by the following action:

SNGR = m2
Pl

∫
|θ|
(
a1T

µ
νρT

νρ
µ + a2T

µ
νρT

ρν
µ + a3T

µ
ρµT

νρ
ν

)
d4x, (1)

where mPl is the Planck mass,

Tµνρ =
•
Γ
µ

νρ −
•
Γ
µ

ρν (2)
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is the torsion component with

•
Γ
µ

νρ = e µA ∂ρθ
A
ν + e µA

(
Λ−1

)A
D
∂ρΛ

D
Bθ

B
ν , (3)

with θ being the tetrad, e its inverse and Λ is a Lorentz matrix. Global spacetime

indices are raised and lowered with gµν = θAµθ
B
νηAB , while Lorentz indices are

raised and lowered by the Minkowski metric ηAB . The following parameters yield a

theory equivalent to general relativity whose action only differ by a boundary term:

a1 = 1
4 , a2 = 1

2 , and a3 = −1. (4)

3. Method

In order to go from the Lagrangian to the Hamiltonian analysis we need to identify

the velocities (time derivatives on the fundamental fields), derive the conjugate

momenta and express everything in canonical variables. We may decompose the

torsion scalar in the ADM variables14 lapse α, shift βi and the spatial components

of the tetrad θAi:

T =
1

2α2
TAi0T

B
j0M

i j
A B

+
1

α2
TAi0T

B
kl

[
M i l

A Bβ
k + 2αa2h

ilξBθ
k
A + 2αa3h

ilξAθ
k
B

]
+

1

α2
TAijT

B
kl

[
1

2
M i k

A Bβ
jβl + 2αa2h

jlξAθ
i
Bβ

k + 2αa3h
jlξAθ

k
B β

i

]
+ 3T,

(5)

where hij = θAiθ
B
jηAB is the induced metric, which is used to raise and lower spatial

indices, ξA = − 1
6ε
A
BCDθ

B
iθ
C
j θ

D
kε
ijk ,

M i j
A B = −2a1h

ijηAB + (a2 + a3)ξAξBh
ij − a2θ j

A θ
i
B − a3θ i

Aθ
j
B , (6)

and
3T ≡ a1ηABTAijTBklhikhjl + a2ηACθ

C
mh

imηBDθ
D
ph
jpTAkjT

B
lih

kl

+ a3ηACθ
C
mh

imηBDθ
D
ph
jphklTAkiT

B
lj .

(7)

Without any loss of generality15 we can restrict ourselves to the Weitzenböck gauge

for which the torsion components are expressed as:

TAµν = ∂νθ
A
µ − ∂µθAν , (8)

and hence the conjugate momenta become:

α
πiA√
h

= TBj0M
i j
A B + TBkl

[
M i l

A Bβ
k + 2αa2h

ilξBθ
k
A + 2αa3h

ilξAθ
k
B

]
. (9)

The velocities can now be inverted and expressed in canonical variables using:

SiA = θ̇BjM
i j
A B , (10)
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with

SiA = Dj

(
αξB + βmθBm

)
M i j

A B

− TBkl
[
M i l

A Bβ
k + 2αa2h

ilξBθ
k
A + 2αa3h

ilξAθ
k
B

]
+ α

πiA√
h
,

(11)

where Di is the Levi-Civita covariant derivative with respect to the induced metric.

However, M in equation (10) is singular for certain combinations of parameters of

the theory and can hence only be inverted by the Moore-Penrose pseudo-inverse

matrix5. This is apparent if one decomposes the equation into irreducible represen-

tations of the rotation group, which generates the following constraints:

2a1 + a2 + a3 = A1 = 0 =⇒ V Ci = SiAξ
A = 0, (12)

2a1 − a2 = A2 = 0 =⇒ ACij = SkAθ
A
[jhi]k = 0, (13)

2a1 + a2 = A3 = 0 =⇒ SCij = SkAθ
A
(jhi)k −

1

3
SkAθ

A
khij = 0, (14)

2a1 + a2 + 3a3 = A4 = 0 =⇒ TC = SiAθ
A
i = 0. (15)

These are primary constraints since these constrain both the tetrad field and their

conjugate momenta, which also can be decomposed into irreducible parts.

4. Results

There are 9 non-trivial classes of theories, which are made by imposing a combina-

tion of (12)-(15):

Theory Implied constraints

Ai 6= 0 ∀i ∈ {1, 2, 3, 4} No contraints

A1 = 0 V Ci = 0

A2 = 0 ACji = 0

A3 = 0 SCji = 0

A4 = 0 TC = 0

A1 = A2 = 0 V Ci = ACji = 0

A2 = A3 = 0 SCji = ACji = 0

A2 = A4 = 0 ACji = TC = 0

A1 = A3 = A4 = 0 V Ci = SCji = TC = 0

The Hamiltonian is found to always appear with four Lagrange multipliers (lin-

earity in lapse and shifts) with:

H = αH
(
θAi,

(
M−1

) A C

i k

)
+ βkHk

(
θAi,

(
M−1

) A C

i k

)
+Di

[(
αξA + βjθAj

)
πiA
]
,

(16)

in the unconstrained case. This gives rise to 4 secondary constraints. In addition

4 degrees of freedom in phase-space can be removed by diffeomorphism invariance,
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8 by the primary constraints for θ 0
A and then some more primary constraints cor-

responding to the constraints of the specific theory. These degrees of freedom are

subtracted from the initial 32 degrees of freedom corresponding to the tetrad compo-

nents and their conjugate momenta. In teleparallel equivalence to general relativity

there are as expected 4 degrees of freedom in phase space and the Poisson brackets

are all shown to be of first class in1–5.

5. Discussion

It is apparent that we can get different number of degrees of freedom depending on

which class of theory we are in. The degrees of freedom are consistent with what we

would expect from general relativity. To properly calculate the number of degrees

of freedom, one needs to calculate the Poisson brackets between the constraints and

the Hamiltonian (seperately for each of the 9 cases).

However, if one assumes that all Poisson brackets are of first class, then the

counting for each case can be performed and this also gives us a lower limit on the

number of degrees of freedom. The number of degrees of freedom can be compared

with polarization modes in gravitational waves. One may extend this analysis to

f(TNGR) or include parity violating terms. Another direction to proceed in is to

make a teleparallel gravity formulation in other curvature based modified gravity

theories. Then the counting of degrees of freedom has to be well understood.
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