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We present the effect of the quantum corrections on the Szekeres spacetime, a system
important for the study of the anisotropies of the pre-inflationary era of the universe. The
study is performed in the context of canonical quantisation in the presence of symmetries.
We construct an effective classical Lagrangian and impose the quantum version of its
classical integrals of motion on the wave function. The interpretational scheme of the
quantum solution is that of Bohmian mechanics, in which one can avoid the unitarity
problem of quantum cosmology. We discuss our results in this context.
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1. Introduction

The interest on the silent universe lies on the fact that they can be seen as inho-
mogeneous models rendering them proper for the description of FLRW spacetimes
perturbations1–5. Indeed, it is known that there exists a family of exact solutions
for the field equations of the silent universe described as Szekeres geometries with
line element of the form6

ds2 = −dt2 + e2αdr2 + e2β
(
dy2 + dz2

)
(1)

where α ≡ α (t, r, y, z) and β ≡ β (t, r, y, z). These correspond to the Friedmann–
Lemaître–Robertson–Walker-like geometries and the Kantowski-Sachs solutions7

in which the two components of the electric part of the Weyl tensor and the two
components of the shear for the observer uµ are equal. The field equations for the
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silent universe reduce to a system of algebraic-differential equations

θ2

3
− 3σ2 +

(3)R

2
= ρ, (2a)

ρ̇+ θρ = 0, (2b)

θ̇ +
θ2

3
+ 6σ2 +

1

2
ρ = 0, (2c)

σ̇ − σ2 +
2

3
θσ + E = 0, (2d)

Ė + 3Eσ + θE +
1

2
ρσ = 0, (2e)

where ˙ denotes the directional derivative along uµ, the energy density is ρ =

Tµνuµuν , with Tµν being the energy-momentum tensor of the matter, the param-
eter θ = (∇νuµ)h

µν is the expansion rate of the observer, while σ and E are the
shear and electric component of the Weyl tensor, Eµ

ν = Eeµν , σµ
ν = σeµν , in which

the set of {uµ, eµν} defines an orthogonal tetrad.
In the following we study the quantization of this system in terms of canonical

quantization in the presence of symmetries8. The starting point is the effective
Lagrangian obtained in9. The physical properties at the quantum level are studied
by adopting the Bohmian interpretation10,11 since it is well suited for quantum
cosmology12,13.

2. Classical and Quantum Dynamics

In9 the Szekeres system (2) was written in an equivalent form of a two second-order
differential equations system

ẍ+ 2
ẏ

y
ẋ− 3

y3
x = 0, (3a)

ÿ +
1

y2
= 0. (3b)

where the variables x, y are related to the energy density and the electric term
as ρ = 6

(1−x)y3 , E = x
y3(x−1) , while the expansion rate and the shear are defined

by the equations (2b), (2e) as θ = − ρ̇
ρ , σ =

2(ρ̇E−ρĖ)
ρ(ρ+6E) . It was shown there that

the dynamical system (3) can be derived by a variational principle with Lagrange
function9

L (x, ẋ, y, ẏ) = yẋẏ + xẏ2 − xy−1 (4)

The system (3) admits two integrals of motion, quadratic in the velocities; the first
is the Hamiltonian function since the system is autonomous, while the second one is
the quadratic function I0 which can be constructed by the application of Noether’s
theorem for contact symmetries9. Choosing a new set of variables {u, v} defined by
x = vu−1, y = u and turning to the phase space, the Hamiltonian and the conserved
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quantity I0 can be written in terms of the momenta as

pupv +
v

u2
= h, (5a)

p2v − 2u−1 = I0 (5b)

When turned to quantum operators and imposed on the wave function lead to two
eigenvalue equations (

−∂uv +
v

u2

)
Ψ = hΨ, (6a)(

∂vv +
2

u

)
Ψ = −I0Ψ, (6b)

the first one being the time-independent Schroödinger equation. Their solution is

Ψ(I0, u, v) =

√
u√

2 + I0u
(Ψ1 cos f (u, v) + Ψ2 sin f (u, v)) (7)

where

f (u, v) =
(hu+ I0v)

√
2I0 + I20u− 2h

√
u arcsinh

√
I0u
2

I
3/2
0

√
u

, for I0 ̸= 0, (8)

f (u, v) =

√
2
(
hu2 + 3v

)
3
√
u

, for I0 = 0. (9)

where the coefficients Ψ1 and Ψ2 are constants of integration. Due to the linearity
of (6a), the general solution is ΨSol (u, v) =

∑
I0
Ψ(I0, u, v).

3. Semiclassical analysis and probability

In the context of Bohmian mechanics, the departure from the classical theory is
determined by an additional term in the classical Hamilton-Jacobi equation, known
as quantum potential QV = −2Ω

2Ω , where Ω denotes the amplitude of the wave
function in polar form, Ψ(u, v) = Ω(u, v)eiS(u,v). When the quantum potential is
zero, the identification

∂S

∂qi
= pi =

∂

∂q̇i
(10)

is possible. If this classical definition for the momenta is retained even when Q ̸= 0,
the semiclassical solutions will differ from the classical ones.

Under the assumption that the quantum corrections in the general solution (7)
follow from the “frequency I0” with the highest peak in the wave function, which is
in agreement with the so-called Hartle criterion14, the quantum potential vanishes.
This provides no quantum corrections and the semiclassical equations (10) give the
classical solution. This is an indication that the Szekeres universe remains “silent”,
even at the quantum level.
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Fig. 1. Qualitative evolution of the normalize parameter c23 in terms of the free parameter I0 for
k = 1 (blue line), k = 2, (yellow line), k = 3 (green line) and k = 4 (red line). From the plot we
observe that c23 goes to zero for values of I0 close to zero.

Fig. 2. Qualitative evolution of the probability function in the space of variables x, v.

In the case h = 0 and Ψ1 → 0, the wave function is well behaved at u → 0 and
u → ∞. We can thus define a probability which, after a change of coordinates to
u → 2

x2−I0
becomes

P =

∫ λ

√
I0+ϵ

dx

∫ 2kπ

0

dv
4c23 sin(xv)
x(x2 − I0)2

, k ∈ N. (11)

where the cut-off constant λ is introduced to exclude the case E = 0, ρ = 0. The
normalization gives a quantized value for the constant c3. Its qualitative evolution
is given in Fig. 1. The qualitative behaviour of the probability function is given in
the surface diagram in Fig. 2 and the contour plot in Fig. 3. The plots show that
for I0 → 0 the probability function reaches its minimum.

4. Conclusions

Our quantum analysis of the Szekeres system was based on the canonical quantiza-
tion in the presence of symmetries and the results were interpreted by adopting the
Bohmian mechanics approach. The starting point was an effective classical point-
like Lagrangian which can reproduce the two dimensional system of second-order
differential equations resulted from the initial field equations. This Lagrangian is
autonomous, thus there exists a conservation law of “energy” corresponding to the
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Fig. 3. Contour plot for the probability function in the space of variables x, v. We observe that
as x → 0 and v is small, that is, I0 → 0, the function P (x, v) reaches to a minimum extreme.

Hamiltonian function. As for the extra contact symmetry, it leads to a quadratic in
the momenta conserved quantity attributed to a Killing tensor of the second-rank.
The two conserved quantities give two eigenequations at the quantum level, the
Hamiltonian function being the Schrödinger equation.

The assumption that the wave function is peaked around its classical value.
This leads to the lack of quantum corrections and the recovery of the classical
solutions, thus leading to the conclusion that the Szekeres universe remains silent
at the quantum level. Finally, for the particular case h = 0 it was shown that the
probability function and relate one (unstable) exact solution with the existence of
a minimum of this probability.

At this point, we would like to remind that the Szekeres system admits the
exact solution uA (t) = 6

2
3

2 t
2
3 , vA (t) = v0t

− 1
3 , in which the integration constants

h and I0 are zero9. The latter solution corresponds to an unstable critical point
for the dynamical system (2) and it is very interesting that the conditions for the
existence of the exact solution, i.e. h = 0 and I0 = 0, lead to an extremum for
the probability function. This might be related with the existence and stability of
the exact solution. The fact that the quantum probability has its minimum at the
classical value is in accordance with the analysis of the probability extrema in15

where it was shown that the extrema of the probability lie on the classical values.
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