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The curve in space occupied by the mass during time evolution, is a geodesic on the space-

time manifold curved by the presence of masses: the mass can only follow its trajectory

consistently with the underlying gravitational field. Is it possible to think at the charge
trajectory in a similar fashion? Is it possible to say that the charge trajectory, the curve

in phase-space occupied by the charge during time evolution, is the geodesic on the

extended phase-space curved by the presence of charges? If yes then it should be possible
to obtain an Einstein’s equation also for electromagnetism. This is done by considering a

metric on the whole extended phase-space. It is proposed to add a Hilbert-Einstein term

in the lagrangian when velocities are considered as dynamical variables. Here, it will be
analyzed what happens if the (non perturbative) guiding center description of motion

is adopted1. In such case, a similar mechanism to the one proposed by Kaluza and

Klein (KK)2,3 a century ago is found. The advantage of using the present description
is that, now, there is no need of looking for a compactification scheme as required in

the original KK mechanism. Indeed, the extra-dimension that appears in the guiding
center transformation is a physical and, in principle, measurable variable being the gyro-

phase, the angle obtained when the velocity space is described in a sort of cylindrical

transformation of velocities coordinates. Regardless of the equations that are really
similar to the one seen in the KK mechanism, the new claim is in the interpretation of

the extra dimension as a coordinate coming from the phase-space. Until now, all the

compactification mechanisms have been shown to give problems, like the inconsistency
of the scale of masses with observations. Instead, without a compactification at the

Planck scale length and giving a physical meaning to the extra-coordinate, it seems that

the KK mechanism can finally be accepted as a realistic explanation of the presence of
gravitation and electromagnetism treated in a unified manner in general relativity theory

extended to higher dimensions.
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1. Introduction

The thesis of the present work is that through the guiding center transformation1,4

it is possible to support the Kaluza-Klein model2,3,5,6 without the need to use new

physical dimensions with respect to those of the phase space extended to time.

What turns out is that the extra dimension comes from the velocity space. There

are two constants of motion, the single particle lagrangian that does not change

value with respect to the guiding center transformation and the magnetic moment

that does not change value with respect to the variation of the gyrophase. In the non

perturbative guiding center transformation it is assumed that there exist a reference

point, the guiding center, from where the particle motion is seen to be closed and

periodic. Thus the motion of a charged particle is represented by the product of

the guiding center orbit times the circle with gyroradius, ρ. Such helicoid motion
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is implicitly written in a flat phase space as

x = X + ρ(t,X, γ;µ, ε) (1)

u = U(t,X;µ, ε) + ν(t,X, γ;µ, ε),

where u = x′ is the relativistic velocity of the particle, U = X ′ is the relativistic ve-

locity of the guiding center and ν = ρ′ is the difference or the proper time derivative

of the gyroradius. The relativistic lagrangian is:

L = −pαuα, (2)

being the co-momentum pα = uα+(e/m)Aα(xβ), with Aα the e.m. potential. Also

the guiding center has a co-momentum defined as Pα = Uα+(e/m)Aα(Xβ), in such

a way that the lagrangian in (2) is

L = −pαuα = −PαUα − (e/m)g′. (3)

If g is proportional to the product of the magnetic moment, µ, times the gyro-phase,

γ, it is called the guiding center gauge function : g = (m/e)µγ. Such gauge function

doesn’t alter the equation of motion but it is useful for preserving the same value of

the lagrangian along the motion. The link with the KK model starts from denoting

the values z0 = t, z = X, z4 = γ and w0 = P0 = U0+(e/m)Φ, w = P = U+(e/m)A

and w4 = (m/e)µ, then

L = −waz′a, for a=0,1,2,3,4. (4)

which is a scalar product in a space-time of five dimensions. Moreover, if you require

that w5 = w6 = 0 and z5 = µ, z6 = ε is the particle energy (per unitary mass),

then you can also write

L = −wAz′A, for A=0,1,2,3,4,6. (5)

The latter is what is called the phase-space lagrangian from which it is possible to

find the Hamilton’s equations. It is better to denote with a hat the guiding center

phase-space lagrangian: L = L̂(zA, z′B), for A,B = 0, 1, 2, 3, 4, 6. As said in7, the

reason for the vanishing of w5 and w6 is due to the fact that ε is the conjugate

coordinate of t and (m/e)µ is the conjugate coordinate of γ.

Now, the lagrangian is invariant at a glance with respect to general non-canonical

phase-space coordinates transformations, that include also the gauge transforma-

tions.

2. Kaluza-Klein solution

The coordinates zA with A = 0, 1, 2, 3, 4, 5, 6, just introduced, belong to the ex-

tended phase space. As for general relativity, where a geometry is given to the

space-time, in this section a geometry is given to the extended phase-space.
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Let’s start from the Poincaré-Cartan one-form from (5): L̂dŝ = −wAdzA, for

A = 0, 1, 2, 3, 4, 5, 6. The same one-form can be written as

L̂dŝ = −ĝABwBdzA, (6)

being L̂ a scalar quantity and where ĝAB is the metric tensor with the property

that wA ≡ ĝABw
B . Thus, wB are the contravariant momenta. Once the metric

tensor is appeared, it is possible to apply a variational principle for finding it. For

this reason, we consider a lagrangian density over the extended phase space where

the single particle lagrangian is multiplied for the distribution of masses and, then,

added to the HE lagrangian in extended dimensions. In the following the lagrangian

distribution is

`a = fmL̂−
R̂

16πĜ
, (7)

Thus, the action is:

S =

∫
`a dM, (8)

which is a definite integration in a domain ∂M of the extended phase space. It is

possible to separate in `a the effects of different contributions: a matter, a field and

an interaction lagrangian distribution. Concerning the field action, Sf , we have:

Sf = −
∫

R̂
16πĜ

√
|ĝ|d7z = (9)

= −
∫
FαβF

αβ

4

√
−gdtd3X −

∫
R

16πG

√
−gdtd3X.

In order to obtain the latter result the KK mechanism is applied. At the same time,

the action due to the interaction:

Sid =

∫
fm(1 + L̂)

√
|ĝ|d7z = −

∫
AαJ

α√−gdtd3X, (10)

where Jα is the charge four-current density which is a field depending on (t,X).

The former equation is obtained through the non perturbative guiding center trans-

formation and the misleading symmetry, below described. It is worth noticing that

once integrated in the velocity space, the obtained lagrangian density is the one

used for describing the presence of matter as source of a gravitational field, which

gives the Einstein equation, together with a charge four-current density as source

of an e.m. field, which gives the Maxwell equations. It is worth noticing that after

the integration over the velocity space the model equations have lost locality.

2.1. The misleading symmetry

In the relativistic case, it is chosen to preserve the product uαAα(xβ) = UαAα(Xβ)

that allows to write L = −1 + (e/m)uαAα(xβ) = L̂ with

L̂ = −1 + (e/m)UαAα(Xβ), (11)
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which is the same form of L. The required condition is reached if

(m/e)µγ′ = 1− UαUα. (12)

The latter relation is also more interesting if (m/e)µγ′ = U4U4, where U4 = z4′ = γ′

and U4 is firstly defined as U4 ≡ w4 = (m/e)µ. In such way that

UaUa = 1, for a = 0, 1, 2, 3, 4. (13)

Moreover, if the relation wa = Ua + (e/m)Aa is used, then A4 = 0 for consis-

tency: there is not a 5th component of the e.m. potential. The symmetry that

leaves invariant the form of L = −1 + (e/m)uαAα(xβ) = −1 + (e/m)UαAα(Xβ) is

said misleading because there is no way, starting from the dynamics, e.g. from the

lagrangian, to distinguish particle’s coordinates from guiding center’s coordinates.

The only chance for appreciating the difference is by measuring the dispersion rela-

tion: from kinematics, the particle has uαuα = 1 whilst the guiding center doesn’t,

UαUα 6= 1, that means that the guiding center is a virtual particle.

3. Conclusion

We have just seen that the guiding center transformation, which is a particular local

translation in the extended phase space, e.g. see (1), is a symmetry because it leaves

the same lagrangian form. In analogy to what happens for the local translation in

spacetime, the conserved quantity for the present symmetry should be called the

extended energy-momentum tensor T̂AB . Now, the Einstein tensor for the extended

phase space is obtained from the variation of −R̂/16πĜ with respcet to δĝAB :

ĜAB = R̂icAB − R̂ ĝAB/2, (14)

and the Einstein equation can be written also for the extended phase space,

ĜAB = 8πĜ T̂AB . (15)

It is worth noticing that, if confirmed, we have just obtained gravitation and elec-

tromagnetism from a geometrical perspective.
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