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Abstract

Riemann’s principle “force equals geometry” provided the basis for Einstein’s General Relativity - the

geometric theory of gravitation. We introduced a Generalized Principle of Inertia stating that: ”An inani-

mate object moves inertially (with constant velocity) in its own spacetime whose geometry is determined

by the forces affecting it”. Classical Newtonian dynamics for motion under a conservative force field is

treated within this framework, using a properly defined Newtonian metric on an inertial lab frame which

is obtained from the potential of the force field acting on the object. We reveal a physical deficiency of

this metric (responsible for the inability of Newtonian dynamics to account for relativistic behavior), and

remove it. The dynamics defined by the corrected Newtonian metric leads to a new Relativistic Newtonian

Dynamics for both massive objects and massless particles moving in any static, conservative force field, not

necessarily gravitational. This dynamics reduces in the weak field, low velocity limit to classical Newtonian

dynamics and also exactly reproduces the tests of General Relativity.
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I. SUMMARY

Bernhard Riemann, although best known as a mathematician, became interested in physics

in his early twenties. His lifelong dream was to develop the mathematics to unify the laws of

electricity, magnetism, light and gravitation. Riemann’s approach to physics was geometric. As

pointed out in [1], “one of the main features of the local geometry conceived by Riemann is that it

is well suited to the study of gravity and more general fields in physics.” He believed that the forces

at play in a system determine the geometry of the system. For Riemann, force equals geometry.

The application of Riemann’s mathematics to physics would have to wait for two more essential

ideas. While Riemann considered how forces affect space, physics must be carried out in space-

time. One must consider trajectories in spacetime, not in space. For example, in flat spacetime,

an object moves with constant velocity if and only if his trajectory in spacetime is a straight line.

On the other hand, knowing that an object moves along a straight line in space tells one nothing

about whether the object is accelerating. As Minkowski said, “Henceforth, space by itself, and

time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two

will preserve an independent reality [2].” This led to the second idea. Riemann worked only with

positive definite metrics, whereas Minkowski’s metric on spacetime is not positive definite. The

relaxing of the requirement of positive-definiteness to non-degeneracy led to the development of

pseudo-Riemannian geometry.

GR is a direct application of “force equals geometry.” In GR, the gravitational force curves

spacetime. Since, by the Equivalence Principle, the acceleration of an object in a gravitational field

is independent of its mass, curved spacetime can be considered a stage on which objects move. In

other words, the geometry is the same for all objects. However, the Equivalence Principle holds

only for gravitation. In this way, GR singles out the gravitational force from other forces which are

not treated geometrically. For example, the potential of an electric force depends on the charge of

the particle, and the particle’s acceleration depends on its charge-to-mass ratio. Thus, the electric

field does not create a common stage on which all particles move. Indeed, a neutral particle does

not feel any electric force at all. The way spacetime curves due to an electric potential depends

on both the potential and intrinsic properties of the object. How, then, are we to apply Riemann’s

principle of “force equals geometry” to other forces?

In this talk, we realize Riemann’s program for motion in any static, conservative force field.
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One of the main new ideas is the relativity of spacetime. By this, we mean that spacetime is an

object-dependent notion. An object lives in its own spacetime, its own geometric world, which is

defined by the forces which affect it. For example, in the vicinity of an electric field, a charged

particle and a neutral particle exist in different worlds, in different spacetimes. Likewise, in the

vicinity of a magnet, a piece of iron and a piece of plastic live in two different worlds.

An inanimate object has no internal mechanism with which to change its velocity. Hence, it

has constant velocity in its own world (spacetime). This leads us to formulate a new principle,

the Generalized Principle of Inertia, which generalizes Newton’s First Law and states that: An

inanimate object moves inertially, that is, with constant velocity, in its own spacetime whose

geometry is determined by the forces affecting it. This is a generalization, or more accurately,

a relativization of what Einstein accomplished. In GR, an object freely falling in a gravitational

field is in free motion. This is attested to by the fact that along a geodesic, the acceleration is zero.

The Generalized Principle of Inertia states that every object is in free motion in its spacetime,

determined by the forces affecting it. Since, by the Generalized Principle of Inertia, an object

moves with constant velocity in its own spacetime, we assume that there exists a metric with

respect to which the length of the object’s trajectory is extremal. This metric, which we call

the metric of the object’s spacetime, will depend only on the forces, and, in the case of static,

conservative forces, the metric will depend only on the combined potential of these forces..

Since the object’s metric extremizes the length of trajectories, its worldline is derived from the

conservation rules resulting from a variational principle. Let q : σ→ x,a≤ σ ≤ b be a trajectory of

an object, where σ is an arbitrary parameter. Let ds2 = gi j(q)dqidq j be the metric of the object’s

spacetime. Define

L(q, q́) =
ds
dσ

=
√

gi j(q)q́iq́ j, (1)

where q́ = dq
dσ

. The length l(q) of the trajectory q does not depend on the parametrization and is

given by
∫ b

a
ds
dσ

dσ =
∫ b

a L(q, q́)dσ .

We show that classical Newtonian dynamics for motion under a static, conservative force with

potential U extremizes distances under the metric

ds2 = (1−u(x))c2dt2− 1
1−u(x)

dx2, (2)

where u(x) = −2U(x)
mc2 denotes the dimensionless potential. The huge success of Newtonian dy-

namics implies that the Newtonian metric (2) is close to the one that governs the laws of Nature.
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Nevertheless, the observed astrophysical deviations from the predictions of this dynamics indicate

that this metric has a deficiency and needs to be corrected.

The metric (2) is deficient in that it is isotropic - it alters the spatial increments equally in all

spatial directions. The potential, on the other hand, influences only the direction of the gradient

∇U and has no influence on the spatial increments in the directions transverse to the gradient.

To remove this problem, we introduce at each x a normalized vector n(x) = ∇U(x)/|∇U(x)| in

the direction of the gradient of U(x) and denote by dxn and dxtr, respectively, the projections of

the spatial increment dx in the parallel and transverse directions to n(x). With this notation, the

corrected Newtonian metric is

ds2 = (1−u(x))c2dt2− 1
1−u(x)

dx2
n−dx2

tr. (3)

We will call the dynamics resulting from this metric Relativistic Newtonian Dynamics (RND).

In the case of the gravitational field of a non-rotating, spherically symmetric body of mass

M, in spherical coordinates with origin at its center, the potential is U(r) = −GmM/r, and the

dimensionless potential is u(r) = 2GM/c2r = rs/r, where rs = 2GM/c2 is the Schwarzschild

radius. In this case, the metric (3) is

ds2 =
(

1− rs

r

)
c2dt2− 1

1− rs/r
dr2− r2dθ

2− r2 sin2
θdϕ

2, (4)

which is the well-known Schwarzschild metric ([3]). This implies that RND reproduces the tests

of GR, as shown in [4–7].

The RND energy has, in addition to the usual kinetic and a potential energies term, a mixed term

which depends on both the velocity of the object and the potential. This means that in order to

reproduce relativistic effects, one can no longer distinguish between potential and kinetic energy,

as in Newtonian dynamics. This also explains the need to include the velocity in the modified

Newtonian potentials proposed in [8–13].

The RND dynamics equation has adds two new terms to Newton’s second law and reduces to

it in the low velocity, weak field limit. Kepler’s laws of planetary motion in celestial mechanics

provided the basis for Newtonian physics, applicable until today to all forces of Nature in the non-

relativistic regime. In a similar way, we expect RND to provide the basis for relativistic physics
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for other forces of Nature.
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