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Abstract

Hawking’s singularity theorem concerns matter obeying the strong en-
ergy condition (SEC), which means that all observers experience a non-
negative effective energy density (EED), thereby guaranteeing the timelike
convergence property. However, for both classical and quantum fields, vi-
olations of the SEC can be observed in some of the simplest of cases,
like the Klein-Gordon field. Therefore there is a need to develop theorems
with weaker restrictions, namely energy conditions averaged over an entire
geodesic and quantum inequalities, weighted local averages of energy den-
sities. We have derived lower bounds of the EED in the presence of both
classical and quantum scalar fields allowing nonzero mass and nonminimal
coupling to the scalar curvature. In the quantum case these bounds take
the form of a set of state-dependent quantum energy inequalities valid for
the class of Hadamard states. Finally, we discuss how these lower bounds
are applied to prove Hawking-type singularity theorems asserting that,
along with sufficient initial contraction at a compact Cauchy surface, the
spacetime is future timelike geodesically incomplete. The talk is based on
arXiv:1803.11094 and a manuscript in preparation.

A spacetime is defined to be singular if it possesses at least one incomplete
geodesic. The question of whether or not cosmological models either originate
or terminate in singularities has been an active subject of research since the
formulation of the general theory of relativity. Initial efforts focused on models
with high levels of symmetry, with the first decisive step forward in 1955 with
the work of Raychaudhuri. The Raychaudhuri equations in their modern form
[3] present the evolution of geodesic congruences, and for the case of an timelike
irrotational congruence with velocity field Uµ, the expansion θ = ∇µUµ satisfies

∇Uθ = RµνU
µUν − 2σ2 − θ2

n− 1
, (1)

where n is the spacetime dimension, σ is the shear scalar and Rµν is the Ricci
tensor. The Raychaudhuri equations are the heart of all singularity theorems.
Senovilla [10] has described the skeleton of the singularity theorems in terms of
a ‘pattern theorem’ with three ingredients. An energy condition establishes a fo-
cussing effect for geodesics, while a causality condition removes the possibility of
closed timelike curves, and a boundary or initial condition establishes the exis-
tence of some trapped region of spacetime. We will divide singularity theorems
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into ‘Hawking-type’ from Hawking’s original theorem [6] and ‘Penrose-type’
from Penrose’s theorem [9], depending on whether they demonstrate timelike or
null geodesic incompleteness respectively. Hawking-type results which concern
us here are based on the strong energy condition (SEC)

ρ = TµνU
µUν − T

n− 2
≥ 0 , (2)

which requires that the effective energy density ρ is positive.
For the minimally coupled Klein-Gordon field the EED is

ρ = (∇Uφ)2 − m2φ2

n− 2
, (3)

which is easily made negative at individual points. This situation is exacerbated
in quantum field theory, in which none of the pointwise energy conditions can
hold [4].

For these reasons there has long been interest in establishing singularity
theorems under weakened energy assumptions given averaged energy conditions
that bound the weighted energy density along an entire geodesic∫

γ

dτρ f2(τ) ≥ 0 , (4)

and quantum inequalities that introduce a restriction on the possible magnitude
and duration of any negative energy densities or fluxes within a quantum field
theory ∫

dτf2(τ)〈ρquant〉Ψ(γ(τ)) ≥ −A . (5)

Examples in which various averages of the energy density are required to be
nonnegative include [11, 2, 1]. Our approach in this work follows [5], which
showed that suitable lower bounds on local weighted averages of ρ are sufficient
to derive singularity theorems of both Hawking and Penrose types, even if ρ is
not positive everywhere or has a negative long-term average.

In this talk I will discuss two results in the direction of weakened energy
assumptions of Hawking-type singularity theorems:

• A singularity theorem obeyed by the classical non-minimally coupled Einstein-
Klein-Gordon field .

• The derivation of a difference strong quantum energy inequality for the
non-minimally coupled quantum scalar field, and the proof of a singular-
ity theorem with an energy condition obeyed by the minimally coupled
quantum scalar field.

First I will sketch the derivation of a bound for the EED of the non-minimally
coupled Klein-Gordon field integrated over an entire timelike geodesic. Next I
will show how this bound can be adapted to provide more specific information
about solutions to the full Einstein-Klein-Gordon system. This bound allows
us to prove a Hawking-type singularity theorem: For (M, g, φ) a solution to the
Einstein-Klein-Gordon equation with coupling less than the conformal coupling,
(M, g) admitting a smooth spacelike Cauchy surface, φ obeying global bounds
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and enough initial contraction, (M, g) is future geodesically incomplete. This
shows that sufficient initial contraction on a compact Cauchy surface is enough
to guarantee timelike geodesic incompleteness, even though the non-minimally
coupled Klein-Gordon theory does not obey the SEC. I will also discuss the
hypotheses of the singularity theorem in more depth, and estimate the physical
magnitude of the initial contraction required. I will show that a model in which
the field mass is taken equal to an elementary particle mass would need very little
initial contraction to guarantee that either there is geodesic incompleteness or
that at least, the solution evolves to a situation where the natural energy scales
associated with the field approach those of the early universe.

The second section begins with a brief discussion of the quantization of
EED. We use the algebraic approach to quantum field theory where objects
Φ(f) are members of unital *-algebra A (M) on our manifold M and obey a set
of relations. We only consider Hadamard states on our algebra where the two-
point function ωΨ

2 has a prescribed singularity structure, so that the difference
between two states is smooth. Next we need a prescription for finding algebra
elements that qualify as local and covariant Wick powers. This can be done in
various ways, expressing finite renormalisation freedoms. Hollands and Wald
[7, 8] set out a list of axioms that we follow. Utilizing these definitions, any
classical expression constructed from the stress energy tensor such as the EED
of the non-minimally coupled scalar field

ρ(x) = [ρ̂(φ⊗ φ)]c(x) , (6)

has a quantized form in Hadamard state Ψ defined by

〈ρ(x)〉Ψ(x) = [ρ̂ : ωΨ
2 : ]c(x) . (7)

Here we used : ωΨ
2 : = ωΨ

2 −ω0
2 , the normal ordering of the two-point function.

Using techniques like point-splitting, we derive a non-trivial bound for the
weighted average of the quantized EED over an entire timelike geodesic. If we
constrain the state ψ and the metric gµν to those that satisfy the semiclassical
Einstein equation

〈 : Tµν : 〉Ψ = 8πGµν , (8)

and consider only minimally coupled fields we derive an inequality with only
geometric terms on the left hand side, thus appropriate as a condition for a
singularity theorem. A final obstacle is the fact that the bound depends on the
reference state but in curved spacetimes there is no preferred vacuum. However,
restricting the sampling function f to have limited support we can argue that in
small scales compared to curvature, there is a vacuum state that corresponds to
Minkowski vacuum. Using a partition of unity we can decompose the integral,
obtaining a sum of integrals, each of which can be bounded. The final bound
is similar to classical one and it can be used as a condition to a Hawking-type
singularity theorem considering the appropriate initial contraction.

As the classical singularity theorems have in their hypotheses easily violated
energy conditions there is an ongoing effort to prove ones with weakened con-
ditions, obeyed by known matter. In this talk I will present the derivation of
a Hawking-type singularity theorem with an energy condition obeyed by the
classical non-minimally coupled Einstein-Klein-Gordon field and one with an
energy condition derived by a QEI obeyed by the minimally coupled quantum
scalar field.
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