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We study relativistic stars in degenerate higher-order scalar-tensor theories that evade

the constraint on the speed of gravitational waves imposed by GW170817. It is shown
that the exterior metric is given by the usual Schwarzschild solution if the lower order
Horndeski terms are ignored in the Lagrangian and a shift symmetry is assumed. How-

ever, this class of theories exhibits partial breaking of Vainshtein screening in the stellar
interior and thus modifies the structure of a star. Employing a simple concrete model,

we show that for high-density stars the mass-radius relation is altered significantly even

if the parameters are chosen so that only a tiny correction is expected in the Newtonian
regime. We also find that, depending on the parameters, there is a maximum central

density above which solutions cease to exist. See1 for more details.
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1. Introduction

The nearly simultaneous detection of gravitational waves GW170817 and the γ-ray

burst GRB 170817A places a very tight constraint on the speed of gravitational

waves, cGW. The deviation of cGW from the speed of light is less than 1 part in

1015. This can be translated to constraints on modified gravity such as scalar-

tensor theories, vector-tensor theories, massive gravity, and Hořava gravity. In

particular, in the context of the Horndeski theory (the most general scalar-tensor

theory having second-order equations of motion, two of the four free functions in

the action are strongly constrained, leaving only the simple, traditional form of

nonminimal coupling of the scalar degree of freedom to the Ricci scalar, i.e., the

“f(ϕ)R”-type coupling.

However, it has been pointed out that there still remains an interesting, non-

trivial class of scalar-tensor theories beyond Horndeski that can evade the gravita-

tional wave constraint as well as solar-system tests. Such theories have higher-order

equations of motion as they are more general than the Horndeski theory, but the

system is degenerate and hence is free from the dangerous extra degree of free-

dom that causes Ostrogradski instability. They are called degenerate higher-order

scalar-tensor (DHOST) theory.

In this paper, we consider relativistic stars in DHOST theories that are more

general than the GLPV theory but evade the constraint on the speed of gravitational

waves.
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2. Field equations

The action of the quadratic DHOST theory we study is given by

S =

∫
d4x

√
−g

[
f(X)R+

5∑
I=1

LI + Lm

]
, (1)

where R is the Ricci scalar, X := ϕµϕ
µ, and

L1 := A1(X)ϕµνϕ
µν , L2 := A2(X)(□ϕ)2, L3 := A3(X)□ϕϕµϕµνϕν ,

L4 := A4(X)ϕµϕµρϕ
ρνϕν , L5 := A5(X)(ϕµϕµνϕ

ν)2, (2)

with ϕµ = ∇µϕ and ϕµν = ∇µ∇νϕ. The functions AI(X) must be subject to

certain conditions in order for the theory to be degenerate and satisfy cGW = 1, as

explained shortly.

We require that the speed of gravitational waves, cGW, is equal to the speed of

light. In our theory cGW is given by c2GW = f/(f −XA1), so that

A1 = 0. (3)

The degeneracy conditions read A2 = −A1 = 0 and

A4 = − 1

8f

(
8A3f − 48f2X − 8A3fXX +A2

3X
2
)
, (4)

A5 =
A3

2f
(4fX +A3X) . (5)

We thus have two free functions, A3 and f , in the quadratic DHOST sector with

cGW = 1. Following2, we introduce B1 := (X/4f)(4fX+XA3), and use this instead

of A3.

We consider a static and spherically symmetric metric,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2. (6)

The scalar field is taken to be

ϕ(t, r) = vt+ ψ(r), (7)

where v (̸= 0) is a constant. Even though ϕ is linearly dependent on the time

coordinate, it is consistent with the static spacetime because the action (1) possesses

a shift symmetry, ϕ→ ϕ+ c, and ϕ without derivatives does not appear in the field

equations.

The field equations are given by

Eν
µ = T ν

µ , ∇µJ
µ = 0, (8)

where Eµν is obtained by varying the action with respect to the metric and Jµ is the

shift current defined by
√
−gJµ = δS/δϕµ. The energy-momentum tensor is of the

form T ν
µ = diag(−ρ, P, P, P ). The radial component of the conservation equations,

∇µT
µ
ν = 0, reads

P ′ = −ν
′

2
(ρ+ P ), (9)



May 28, 2018 10:26 WSPC Proceedings - 9.75in x 6.5in main page 3

3

where ′ := d/dr.

With direct calculation we find that Jr ∝ Etr. Therefore, the gravitational field

equation Etr = 0 requires that Jr vanishes. Then, the field equation for the scalar

field is automatically satisfied.

To write the field equations explicitly, it is more convenient to useX = −e−νv2+

e−λψ′2 instead of ψ. In terms of X, we have the equations of the form

Et
t = b1ν

′′ + b2X
′′ + Ẽt(ν, ν′, λ, λ′, X,X ′), (10)

Er
r = c1ν

′′ + c2X
′′ + Ẽr(ν, ν′, λ, λ′, X,X ′), (11)

ψ′Jr = c1ν
′′ + c2X

′′ + ẼJ(ν, ν′, λ, λ′, X,X ′). (12)

We see that Er
r and ψ′Jr have the same coefficients c1 and c2. Moreover, we find

by an explicit computation that Er
r and ψ′Jr are linearly dependent on λ′ and their

coefficients are also the same. Therefore, by taking the combination Er
r − ψ′Jr one

can remove ν′′, X ′′, and λ′. Then, the field equation Er
r − ψ′Jr = P can be solved

for λ to give

eλ = Fλ(ν, ν
′, X,X ′, P ), (13)

where the explicit expresson for Fλ is not important for the moment.

Using Eq. (13), we can eliminate λ and λ′ from Eqs. (10) and (12). In doing so

we replace P ′ with ν′, ρ, and P by using Eq. (9). We then obtain

ψ′Jr = k1ν
′′ + k2X

′′ + J1(ν, ν
′, X,X ′, ρ, P ) = 0, (14)

where k1,2 = k1,2(ν, ν
′, X,X ′, P ). The field equation Et

t + ρ = 0 can also be written

in the form

k1ν
′′ + k2X

′′ + J2(ν, ν
′, X,X ′, ρ, P ) = 0. (15)

Note that we have the same coefficients k1 and k2. This is due to the degeneracy

conditions. We thus arrive at a first-order equation, J1 = J2, which can be solved

for X ′ as

X ′ = F1(ν,X, ρ, P )ν
′ +

F2(ν,X, ρ, P )

r
, (16)

where F1 and F2 are complicated. Their explicit form is presented in the Appendix.

Finally, we use Eq. (16) to eliminate X ′ and X ′′ from Eq. (14). This manipulation

also removes ν′′, as it should be because the theory is degenerate. We thus arrive

at

ν′ = F3(ν,X, ρ, ρ
′, P ), (17)

where the explicit expression of F3 is extremely long and we do not present it here.

We have thus obtained our basic equations describing the Tolman-Oppenheimer-

Volkoff system in DHOST theories. Given the equation of state relating ρ and P ,

one can integrate Eqs. (9), (16), and (17) to determine P = P (r), ν = ν(r), and

X = X(r). Equation (13) can then be used to obtain λ = λ(r).
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3. Numerical Results

Having thus obtained the equations describing the TOV system in DHOST theories,

we solve them numerically. As a specific example, we study the model of2 which is

characterized by two parameters. The equation of state we use is given by

ρ =

(
P

K

)1/2

+ P, K = 123M⊙. (18)

A example of our numerical results is shown in Fig. 1. We take the model param-

eters such that only tiny corrections arise in the Newtonian regime. Nevertheless, we

find large deviation from the result of general relativity in the mass-radius relation

of relativistic stars.

More detailed description is find in1.
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Fig. 1. The mass versus radius diagram for some parameter choices. The black curve represents

the result in general relativity.
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