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Formulation of curvature and torsion in Quantum Geometrodynamics is discussed. Torsion in

quantum evolution for symmetric states is found to be τ2 = 〈H6〉
〈H4〉〈H2〉 . Curvature in the quan-

tum evolution formulated earlier by Brody and Houghston in terms of moments of Hamiltonian as

κ2 = 〈H4〉
〈H2〉2 − 〈H3〉2

〈H2〉3 is verified. Thus, the formulation of curvature in quantum evolution is reas-

suring in more than one ways. The Geometry of Serret− Frenet formulae is recast in the context
of Geometric Quantum Mechanics. The Geometry of quantum neighborhood also leads to the for-
mulation of curvature and torsion during quantum evolution. Estimator problem when subjected
to neighborhood test brings about many significant results. Fourth order term in the quantum
neighborhood test carries information of curvature whereas the sixth order term conveys significant
information regarding torsion.

I. INTRODUCTION

The discussion in this paper is inspired by the formulation of curvature in Quantum Mechanics by Brody and
Houghston [1] and [2]. In the follow up we propose to formulate torsion in Quantum Mechanics and reproduce the
expression of curvature which in turn strengthens the foundations of Geometric Quantum Mechanics. The premise of
Geometric Quantum Mechanics is woven around the notion of neighbourhood. The notions of metric, distance and
geometric phase in quantum evolution are all about nighbourhood in the topological sense. Exercises in the present
discussion too employ the same techniques and the premise to explore curvature and torsion in quantum evolution.
At the outset, we briefly review the background and the perspective in which the present exercise has been carried
out. As a quantum system evolves in time the state vector changes and it traces out a curve in the Hibert space H .
Geometrically, the evolution is represented as a closed curve in the projective Hilbert space P(H ) [3-9]. The idea
of representing quantum state space by complex projective space corresponding to finite dimensional Hilbert space
is now on firm footing [3-7, 10-14]. The distance on the projective Hilbert space is defined in terms of metric, called
the metric of the ray space that is projective Hilbert space P and can be regarded as an alternative definition of the
Fubini-Study metric valid for a finite dimensional Hilbert space H . The metric in the ray space is now being referred
by physicists as the Background Independent and space-time independent structure can play an important role in
the construction of a potential theory of quantum gravity. In the light of recent studies [2, 3, 10-17] of geometry
of the quantum state space the extension of standard geometric Quantum Mechanics is irresistible. Researchers
studying gravity have also shown considerable interest in the geometric structures in Quantum Mechanics in general
and projective Hilbert space in specific [1-3, 14-17]. Thus, an intensive follow up will be academically rewarding [3].
There is prevailing spirit that one can recast Quantum Mechanics in a geometric language which brings about all
the niceties that are relevant to these studies [3]. The author feels that the discussion in the present paper will turn
out be of substantial interest to these studies by means of studies of Background Independent Quantum Mechanics
(BIQM). The idea of geometrization of Quantum Mechanics is to move from Hilbert space to the space of rays which
is the ’true’ space of states of Quantum Mechanics that is projective Hilbert space P(H ) and the corresponding
manifold is Kähler structure. The probabilistic interpretation of Quantum Mechanics is thus inherent in the metric
properties of P(H ) [14-17]. The symmetries of the Geometry of CPN are prescribed by the quotient set

CPN ≡ U(N + 1)

U(N)× U(1)
. (1)

Obviously, it has its limitations as it is valid for finite dimensional Hilbert space only. Thus, the only alternative
that seem to satisfy almost complex structure is the Grassmanian. By the correspondence principle, the genelized
quantum geometry must locally recover the canonical quantum theory encapsulated in P (N) and also allows for
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mutually compatible metric and symplectic structure, and supply the framework for dynamical extension of the
canonical quantum theory. The Grassmanian

Gr(CN+1) =
Diff(CN+1)

Diff(CN+1, CN × 0)
. (2)

II. CLASSICAL GEOMETRY V IS −A− V IS GEOMETRIC QUANTUM MECHANICS: AN OVERVIEW

We briefly discuss the essentials of geometry of Hilbert space, the geometry of quantum state space and the tangent
space in order to build further geometric structures.

Evolution equation and tangent bundle
We first analyze the equation of quantum evolution that is Schrödinger’s equation and then discuss the underlying

geometry. We consider point p ∈ P (N), corresponding to a quantum state | Ψ〉 that is a point at which the quantum
state could be projected into the state space. In a given representation [11-14], | Ψ〉 can be expressed as a column
matrix (α0, α1, α2, ....)T , and the matrix of the Schrödinger’s equation goes as:

i~
dαi(t)

dt
= ΣjHijα

j . (3)

We can define tangent vector on CPN since it is a complex differential manifold [11-14]. We choose the local
coordinates of the point p ∈ P (N) as (α0, α1, α2, ....), then the tangent vector on the point p is

T =
dαi
dt

∂Ψ

∂αi
; (4)

where t is an arbitrary parameter. In a dynamical scenario t could be time as well, and dαi

dt determines the components

of T when we choose our local coordinates (α0, α1, α2, ....) on CPN .

III. THE GEOMETRY OF SERRET − FRENET ′S FORMULAE IN QUANTUM EVOLUTION

We can recast the geometry of Serret− Frenet formulae on the quantum state space too. It is worth mentioning
here that curvature can be formulated by means of evaluating lower bounds on the variance of the estimator as was
done by Brody and Houghston [1]. However, we choose to deduce expressions of curvature and torsion following first
principles of Differential Geometry.
One can define tangent vector on CPN as discussed earlier in this paper and in the references [10-17]. The Geometry
of Serret − Frenet formulae can be discussed alternatively in terms of the arc parameter s on the geodesic that is
Fubini-Study metric

ds2 = ∆E2dt2 = [〈∂iΨ | ∂jΨ〉 − 〈∂iΨ | Ψ〉〈Ψ | ∂jΨ〉]dαidαj . (5)

This is geodesic distance between any two quantum states | Ψ1〉 and | Ψ2〉 and is known as metric of quantum states
on the projective Hilbert space which is the space of quantum states. Also, it should be noticed that the invariant in
the eq. (8) is independent of choice of parameter αi. The length of a geodesic connecting two quantum states | Ψ1〉
and | Ψ2〉 is also referred to as Wooter’s distance by the following expression:

s =

∫
ds = γ[arccos(| 〈Ψ1 | Ψ2〉 |)]. (6)

Where, a tangent at a point p ∈ CPN on the base manifold of quantum states is defined as:

T =
∂Ψ

∂s

ds

dt
; (7)

where, the tangent lies on the tangent space Tp(CP
N ) and

ds

dt
(= v) = 〈(∆E)2〉 12 ; (8)
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can be called velocity of quantum evolution. It is also possible to define normal and bi-normal as function of local
coordinates on the quantum state space using expression of tangent: T = dαi

dt
∂Ψ
∂αi

. However, we follow the standard
formalism in terms of arc length s.
Before we reproduce the Srret-Frenet’s formulae in the context of Quantum Mechanics, we quickly discuss the settings
of basic tenets of the Differential Geometry. We introduce arc length s, as a function of time, then velocity vector
could be written as:

v =
dr

dt
=
dr

ds

ds

dt
= vσ̂; (9)

where, v = ds
dt is the absolute value of velocity and σ̂ is the unit tangent vector directed along tangent line, thus, we can

also denote it by T̂. Later, we replace vector r by unit (dimensionless) vector Ψ ∈H for the present formulation and

thus velocity should be deemed to be v = dΨ
dt = dΨ

ds
ds
dt . The unit vector T̂ is vital in the formulation of Serret−Frenet

formulae from first principles of differential geometry. One may define acceleration as:

a =
dv

dt
=
d(vT̂)

dt
. (10)

Expanding this derivative we get,

a =
dv

dt
T̂ + v

dT̂

dt
. (11)

We now transform the derivative dT̂
dt as:

dT̂

dt
=
dT̂

ds

ds

dt
=
v

R
n̂. (12)

Thus, we get the first Serret− Frenet formula as:

dT̂

ds
= κn̂. (13)

Where,

κ =
1

R
; (14)

is curvature and R is the radius of curvature. Eq. (17) represents first of the three Serret − Frenet formulae.
Alternatively, the curvature κ could also be given as magnitude of the derivative of unit tangent vector with respect
to arc parameter s. The other two Serret− Frenet formulae are given as:

db̂

ds
= −τ n̂; (15)

and

dn̂

ds
= −τ b̂− κT̂. (16)

Eq. (18) and (19) represent second and third Serret−Frenet formulae respectively. Where, n̂ and b̂ are normal and
binormal, and κ and τ are curvature and torsion respectively. Also, this is to clarify that normal to a curve which is
perpendicular to the osculating plane is called binormal. In the present paper curvature and torsion are described in
the usual geometric sense. The physical interpretation is duly emphasized wherever it is warranted.
We now recast the Serret − Frenet formulae in the context of quantum evolution in the following discussion with
emphasis on its relevance in a dynamical scenario. We begin with the tangent space formalism which is nicely discussed
in the context of dynamics using first principles of variational Calculus in various texts such as Pishkunov [18]. We

now define a unit vector called binormal b̂ as:

T̂× n̂ = b̂; (17)
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obviously,

b̂.b̂ = 1. (18)

Thus, the derivative of binormal db̂
ds is found to be

db̂

ds
=
d(T̂× n̂)

ds
=
dT̂

ds
× n̂ + T̂× dn̂

ds
. (19)

But,

dT̂

ds
=

1

R
n̂; (20)

therefore,

dT̂

ds
× n̂ =

1

R
n̂× n̂ = 0; (21)

and thus,

db̂

ds
= T̂× dn̂

ds
. (22)

This relation is known as second Serret− Frenet formula.
Let us note that T̂, n̂ and b̂ are all perpendicular to each other and also, dT̂ds is perpendicular to b̂. We denote length

of the vector db̂
ds by τ as:

| db̂
ds
|= τ ; (23)

here, τ is known as torsion and

db̂

ds
= τ × n̂. (24)

Now, curvature in Differential Geometry in terms of vector Ψ(t) can be given by the following expression:

κ2 =

[
d2Ψ

dt2
1

(dsdt )
2
− dΨ

dt

d2s
dt2

(dsdt )
2

]2

=
[dΨ
dt ×

d2Ψ
dt2 ]2

[(dΨ
dt )2]3

. (25)

It is pertinent to mention that this expression of curvature represents scalar curvature. In the structure of Serret−
Frenet formulae in Differential Geometry, curvature is a dimensionless quantity expressed in terms of arc length s
and the length of the curve does not depend upon the ways and means of parametrization. For the sake of continuity
of the discussion we discuss the remaining niceties in the Appendix of the paper.
Pishkunov [16] and various other texts have described curvature κ in terms of arc length s and even in terms of
parameter t also. If parameter t is time, the consequent description is geometrodynamics and holds for dynamical
systems. We now calculate curvature κ in quantum evolution of a state vector Ψ(t) for an exponential family of curves
such as:

Ψ(t) = Ψ(0)e−
iH
~ t. (26)

Here, the function Ψ(t) follows the evolution

Ĥ | Ψ〉 = E | Ψ〉. (27)

We notice that (
dΨ

dt

)2

=

(
dΨ

dt

)∗(
dΨ

dt

)
⇒
(

1

~

)2

〈Ψ | H2 | Ψ〉 =

(
1

~

)2

〈H2〉; (28)
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and (
d2Ψ

dt2

)2

=

(
d2Ψ

dt2

)∗(
d2Ψ

dt2

)
⇒
(

1

~

)4

〈Ψ | H4 | Ψ〉 =

(
1

~

)4

〈H4〉. (29)

For the numerator in the eq. (28), we use the vector identity(
dΨ

dt
× d2Ψ

dt2

)2

=

(
dΨ

dt

)2(
d2Ψ

dt2

)2

−
(
dΨ

dt

d2Ψ

dt2

)2

⇒
(

1

~

)6 (
〈H2〉〈H4〉 − 〈H3〉2

)
. (30)

Hence, the expression of curvature in the evolution of a vector Ψ in the eq. (28) turns out to be a dimensionless
quantity

κ2 =
〈H2〉〈H4〉 − 〈H3〉2

〈H2〉3
=
〈H4〉
〈H2〉2

− 〈H
3〉2

〈H2〉3
. (31)

This is neverthless the same expression which is deduced for curvature of the exponential familty of curves in the
quantum evolution by Brody and Houghston [1]. Thus, the present exercise further verifies and consolidates founda-
tions of Geometric Quantum Mechanics.
Brody and Houghston [1] carried out a geometric formulation of parameter estimation based on the Geometry of
Hilbert space. In the exercise by Brody and Houston [1] too, the curvature κ is in the literal sense curvature of a
curve in the Hilbert space generated by a unitary evolution, and is calculated by the squared-length of the ’accelera-
tion’ vector, that is component of the second derivative of the state vector in time which is orthogonal to the zeroth
and first derivatives of the vector.
Interestingly, the ratios 〈H

4〉
〈H2〉2 and 〈H

3〉2
〈H2〉3 were known to staticians since long back [19-20] as kurtosis and skewness

respectively in the estimator problem of Statistics. The first term in the expression of curvature κ in eq. (34) is
identified as kurtosis that is measure of sharpness of the distribution, while the second term is found to be skewness
that is measure of asymmetry [1, 19-20].
We emphasize here that the expectation values 〈H4〉 and 〈H2〉2 ought to be of similar order and of considerable
magnitude. However, the size of κ depends on the type of distribution [23]. In particular, even if it is the case that
the two terms in κ are of similar order, since κ2 is difference of two terms and not the sum, it can still be small [23].

We now compute torsion τ for quantum evolution of a vector Ψ, which in Differential Geometry appears in the
following dimensionless expression:

τ2 =

[
dΨ
ds .(

d2Ψ
ds2 ×

d3Ψ
ds3 )

κ2

]2

=

[
dΨ

dt
.

(
d2Ψ

dt2
× d3Ψ

dt3

)]2

[(
dΨ

dt
× d2Ψ

dt2

)2
]2 . (32)

It is worth noticing that the first derivative of the vector is along the tangent and the vector perpendicular to the
plane of the second and the third derivatives also lies along the direction of the tangent.
As expected, torsion depends on the curvature, and therefore curvature and torsion both are strongly correlated. The

term in the denominator of eq. (34) for the quantum states of the type Ψ(t) = Ψ(0)e−
iH
~ t, is already deduced as:(

dΨ

dt
× d2Ψ

dt2

)2

=

(
dΨ

dt

)2(
d2Ψ

dt2

)2

−
(
dΨ

dt

d2Ψ

dt2

)2

⇒
(

1

~

)6 (
〈H2〉〈H4〉 − 〈H3〉2

)
.

We now evaluate the term in the numerator of eq. (34) as(
dΨ

dt

)2 [
d2Ψ

dt2
× d3Ψ

dt3

]2

=

(
dΨ

dt

)2
[(

d2Ψ

dt2

)2(
d3Ψ

dt3

)2

−
(
d2Ψ

dt2
d3Ψ

dt3

)2
]
⇒
(

1

~

)12 [
〈H2〉

(
〈H4〉〉〈H6〉 − 〈H5〉2

)]
.

(33)
Thus, torsion in a dimensionless expression could be expressed as:

τ2 =

[
〈H2〉

(
〈H4〉〈H6〉 − 〈H5〉2

)][
〈H2〉〈H4〉 − 〈H3〉2

]2 . (34)

In fact, expectation values of the odd order for symmetric states vanish as:

〈H5〉 = 〈H3〉 = 0. (35)
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Consequently, the torsion during evolution of symmetric states turns out to be:

τ2 =
〈H6〉

〈H2〉〈H4〉
. (36)

In the present context, by symmetric states we mean the states that follow Schrödinger’s evolution. In statistical
exposition, the symmetric functions are those functions that have symmetric distribution about the central value.
The expectation value 〈H〉 being the central expectation value does not vanish, and hence,

〈H〉 6= 0. (37)

It is important to note that the expression of curvature in the equation (34) and the expression of torsion in the eq.
(39) are relevant for the quantum states that follow Schrödinger’s evolution. Whereas, the expression of curvature in
the eq. (28) as well as the expression of torsion in the eq. (35) are both valid for all state functions in general.

IV. CURVATURE AND TORSION IN THE NEIGHBOURHOOD TEST

We have precedence, where neighborhood test was applied to explore the quantum evolution and it resulted into
valuable information in the form of distance and metricity in quantum evolution. We find it to be unlimited treasure
of information particularly when we explore it up to fourth and sixth order. We consider the quantum states of the

type Ψ(t) = Ψ(0)e−
iH
~ t that follow the evolution Ĥ | Ψ〉 = E | Ψ〉, and examine the Taylor’s expansion of the function

Ψ(t+ dt)〉 for the infinitesimal time evolution as:

Ψ(t+dt)〉 = Ψ(t)〉+ d

dt
Ψ(t)〉dt+ d2

dt2
Ψ(t)〉dt

2

2!
+
d3

dt3
Ψ(t)〉dt

3

3!
+
d4

dt4
Ψ(t)〉dt

4

4!
+
d5

dt5
Ψ(t)〉dt

5

5!
+
d6

dt6
Ψ(t)〉dt

6

6!
+............ (38)

Taking inner product of the eq. (42) with 〈Ψ(t) |, we get

〈Ψ(t) | Ψ(t+ dt)〉 = 〈Ψ | Ψ〉+

(
−i
~

)
〈Ψ | H | Ψ〉dt+

(
−i
~

)2

〈Ψ | H2 | Ψ〉dt
2

2!
+

(
−i
~

)3

〈Ψ | H3 | Ψ〉dt
3

3!

+

(
−i
~

)4

〈Ψ | H4 | Ψ〉dt
4

4!
+

(
−i
~

)5

〈Ψ | H5 | Ψ〉dt
5

5!
+

(
−i
~

)6

〈Ψ | h6 | Ψ〉dt
6

6!
+ .... (39)

If we take magnitude of this expression, square it and subtract it from unity we get(
1− | 〈Ψ(t) | Ψ(t+ dt)〉 |2

)
=

1

~2

[
〈H2〉 − 〈H〉2

]
dt2 +

1

~4

[
〈H4〉

12
− 〈H

2〉2

4

]
dt4 +

1

~6

[
2〈H6〉

6!
− 〈H

2〉〈H4〉
4!

]
dt6 + ........

(40)
It should be noticed that for functions with symmetric distribution, the odd order expectation values vanish as:
〈H5〉 = 〈H3〉 = 0. In the present context, by symmetric states we mean the states that follow Schrödinger’s evolution.
And the expectation value 〈H〉 being the central expectation value does not vanish as: 〈H〉 6= 0. The second order
term in the expression in eq. (44) is identified [2-7] as invariant: ds2 = ∆E2dt2. When generalized on the space of
quantum states this is called metric of quantum evolution.
In the eq.(44) if we pull out the second terms in the parentheses in fourth and sixth order terms, we find(
1− | 〈Ψ(t) | Ψ(t+ dt)〉 |2

)
=

1

~2

[
〈H2〉 − 〈H〉2

]
dt2+

〈H2〉2

12~4

[
〈H4〉
〈H2〉2

− 3

]
dt4+

〈H2〉〈H4〉
4!~6

[
〈H6〉

〈H2〉〈H4〉
− 15

]
dt6+........

(41)
As discussed earlier, the dimensionless coefficient in the second order term appearing on the right side of eq. (44)
ds2 = 1

~2

[
〈H2〉 − 〈H〉2

]
dt2 = ∆E2dt2

is called metric of the quantum states [2-7]. The dimensionless coefficient in the fourth order term can be easily
identified with curvature as:

κ2 =

(
〈H4〉
〈H2〉2

− 3

)
; (42)

Wherein, skewness for symmetric functions vanishes as 〈H
3〉2

〈H2〉3 = 0.

The numerical factor 3 also conveys a message that we ellaborate in the following paragraphs. Whereas the dimen-
sionless coefficient in the sixth order term could be identified as torsion:

T =

(
〈H6〉

〈H2〉〈H4〉
− 15

)
= τ2 − 15. (43)



7

Here too, the numerical factor 15 carries a message that is well understood in Statistics. Interestingly, numerical
factors 3 and 15 in the expressions of curvature and torsion respectively are already well understood in the studies of
fourth and sixth order moments in Statistics. However, we know from our experience of direct formulation of torsion
by differential geometric means in this paper and from the reference [1] that expression in eq. (46) unambigously
represents torsion. The definition of kurtosis [19, 20] in its entirety is given in two ways:

β2 =
〈H4〉
〈H2〉2

; (44)

and

γ2 = β2 − 3 =
〈H4〉
〈H2〉2

− 3. (45)

This simply implies three possibilities viz.,

γ2


> 0 if 〈H

4〉
〈H2〉2 > 3, β2 is said to be platy-kurtic,

= 0 if 〈H
4〉

〈H2〉2 = 3, β2 is said to be meso-kurtic.

< 0 if 〈H
4〉

〈H2〉3 < 3, β2 is said to be lepto-kurtic

(46)

The expression of curvature in the present case implies that

κ2 =

(
〈H4〉
〈H2〉2

− 3

)
6= 0, (47)

as the kurtic value β2 + 3 is not zero.
In a similar note, we realize the importance of numerical factor 15 in the expression of torsion in eq. (46). For the
sixth order moments there can be 15 terms of permutation [21, 22], and there can be three possibilities with the
expression of torsion:

T


> 0 if 〈H6〉

〈H2〉〈H4〉 > 15,

= 0 if 〈H6〉
〈H2〉〈H4〉 = 15.

< 0 if 〈H6〉
〈H2〉〈H4〉 < 15

(48)

V. SUMMARY AND DISCUSSION

In the present exercise curvature κ and torsion τ in the quantum evolution are discussed and the Serret-Frenet
formulae are recast in terms of arc length s using the first principles of Differential Geometry. Curvature κ in quantum
evolution has been formulated [1] earlier too, and thus evaluation of curvature in quantum evolution is reassuring in
more than one ways. Whereas, the present exercise is the first ever attempt to furmulate torsion in quantum evolution.
For illustration quantum state function of simple exponential form has been considered as usual, and there is scope
for examination of quantum states of various types in the Future.
This physical interpretation of the curvature and torsion is in tune with the mathematical spirit. The curvature
indicates a deviation of the state vector of the evolution from the geodesic line whereas torsion indicates deviation of
state vector from the plane of evolution at a given time. Thus, torsion is measure of deviation of a curve from the
plane of the curve itself. If a curve is plane curve then the osculating plane does not change its direction, and the
torsion is zero. The torsion expressed in terms of curvature indicates that as usual curvature and torsion are strongly
correlated.
In the present exercise on neighbourhood test, we do not limit the investigation to second order terms and extend our
exploration to the fourth and sixth order terms and as a result of this we harvest valuable information.
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