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1. Definition of the theory and its canonical formulation

With the aim of obtaining simultaneously perturbative renormalizability and uni-

tarity, Hořava1 defines a gravitational theory with higher orders only in spatial

derivatives, breaking the symmetry of general diffeomorphisms over the spacetime.

Indeed, the very concept of spacetime is substituted by the one of foliation of space-

like hypersurfaces along an absolute line of time. The gauge symmetry is given by

the diffeomorphisms that preserve the foliation (FDiff). The theory is defined in

terms of the Arnowitt-Deser-Misner variables N , Ni and gij . They are understood

as tensors over the hypersurfaces that evolve in time. The Lagrangian has a kinetic

terms that is of second order in time derivatives,

LK =
√
gNGijklKijKkl , Gijkl ≡ 1

2
(gikgjl + gilgjk)− λgijgkl , (1)

and Kij is the extrinsic curvature of the hypersurfaces. This kinetic term is Fdiff

covariant for any value of the dimensionless coupling constant λ. Our concern

in this paper is a particular formulation of the Hořava theory given by a critical

value of λ, which we call the kinetic-conformal theory. For spatial hypersurfaces

of dimension 3, the critical value for λ we refer to is λ = 1/3. This value defines

a dynamically different formulation of the Horava theory in the sense that the

structure of constraints is discontinuous to the generic formulation with λ 6= 1/3;

it cannot be obtained by continuously varying λ. At λ = 1/3 the hypermatrix

Gijkl becomes degenerated and this leads to the raising of the primary constraint

π ≡ gijπ
ij = 0, where πij is the canonically conjugate of gij . There is also an

additional secondary constraint that emerges when the time preservation of π is

imposed. Then the kinetic-conformal theory propagates less physical degrees of

freedom than the generic formulation. It propagates two physical modes, the same

number of General Relativity. The so-called extra mode of the generic formulation

of the Hořava theory is absent in the kinetic-conformal formulation. We consider

this an interesting feature that deserves to be explored. Furthermore, at λ = 1/3 the

kinetic term (1) gets an anisotropic conformal symmetry defined by the anisotropic
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Weyl transformations1

g̃ij = Ω2gij , Ñ = Ω3N , Ñi = Ω2Ni , (2)

where Ω = Ω(t, ~x). This motivates the name kinetic-conformal. The full theory is

not conformally invariant since the potential is not, unles it is defined with specific

conformal terms.

In Ref.11 several versions of the Hořava theory were associated to the algebra

of the Newton-Cartan geometry. The kinetic-conformal formulation can be found

within this program by fixing the values of some coupling constants on the side

of the Newton-Cartan dynamics. The extrinsic curvature arises via the covariant

derivatives of the inverse vielbein denoted by v̂µ in Ref.11. Then the kinetic term

(1) emerges from the terms that are quadratic in derivatives of v̂µ. There are two

such terms in the Newton-Cartan action. Their coupling constants, denoted by c3
and c4 in Ref.11, determine the constant λ. Therefore, the value λ = 1/3 is achieved

by adjusting c3 and c4.

The action of the nonprojectable Hořava theory is1,2

S =

∫
dtd3x

√
gN

(
GijklKijKkl − V

)
, (3)

where to define the kinetic-conformal theory we consider that the value λ = 1/3 has

been fixed. The potential V should include all the inequivalent terms that are FDiff

covariant and up to sixth order in spatial derivatives (z = 3 terms), as required for

the power-counting renormalizability1. These terms are7

−V(z=1) = βR+ αaia
i , (4)

−V(z=2) = α1R∇iai + α2∇iaj∇iaj + β1RijR
ij + β2R

2 , (5)

−V(z=3) = α3∇2R∇iai + α4∇2ai∇2ai + β3∇iRjk∇iRjk + β4∇iR∇iR , (6)

where ai = ∂i lnN .

In order to determine the dynamical consistency of the theory we have performed

its Hamiltonian formulation3. The phase space is spanned by the conjugate pairs

(gij , π
ij) and (N,PN ). The Hamiltonian, with the primary constraints added, is

given by

H =

∫
d3x

(
N
√
g
πijπij +

√
gNV +NiHi + µπ + σPN

)
, (7)

and the full set of constraints is

Hj ≡ −2∇iπij + PN∂
jN = 0 . (8)

PN = 0 , π = 0 , (9)

1
√
g
H ≡ 1

g
πijπij − βR+ 2α

∇2N

N
− αaiai = 0 , (10)

1
√
g
C ≡ 3

2g
πijπij +

β

2
R− 2β

∇2N

N
+
α

2
aia

i = 0 . (11)
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Hi is a first-class constraint whereas the four constraints PN , π, H and C are of

second class. In the Hamiltonian formulation the shift vector Ni plays the role of

Lagrange multiplier (as in GR), as well as µ and σ. The time preservation of the

second-class constraints leads to equations for µ and σ. When the complete poten-

tial potential V is considered, it can be shown3 that these are elliptic (sixth-order)

equations, hence they can be consistently solved with appropiated boundary condi-

tions. This ends the procedure of Dirac, the structure of constraints is closed. The

constraints H and C can also be casted as elliptic equations if the appropiated field

variables are chosen to solve them, see4. This analysis shows that the Hamiltonian

formulation of the theory is consistent. Considering the second-class nature of PN ,

π, H and C, it results that the theory propagates two physical modes, coinciding

with the number of modes in GR.

The presence of the π = 0 constraint is intriguing, since it generates the Weyl

scalings on gij and πij , but this theory is not conformally invariant. This is in

agreement with the fact that π is of second-class, hence it is not the generator of

gauge symmetries. Contrasting with a purely anisotropic conformal Horava theory,

which is given by a conformal potential, we have that π = 0 can be combined

with the PN = 0 constraint to form the full generator of the anisotropic conformal

transformations (2), which is

$ = π +
3

2
NPN . (12)

In the conformal theory this is a first-class constraint. It is preserved without further

conditions, hence no furhter constraints are generated. Therefore, in the exact

conformal case there is a symmetry more than in the kinetic-conformal formulation,

the anisotropic Weyl scalings, but a constraint less (the C), hence the number of

physical degrees of freedom is the same in both cases, and it is the same of GR.

It is interesting to further explore the similarities between the kinetic-conformal

theory and the exact conformal formulation. Some of us are currently considering

this study6.

2. Quantization: propagators and the superficial degree of

divergence

A perturbative analysis considering all the terms (4) - (6) allows to check explicitly

the consistency of the Hamiltonian formulation of the theory and to obtain the

propagators of the physical modes. We impose the transverse gauge ∂ihij = 0, where

hij represents the perturbative metric around the Minkowski background. The

momentum constraint eliminates the longitudinal sector of the canonical momentum

at first order in perturbations. Constraints H and C are consistently solved for

hkk and the pertubative version of the lapse function, n, fixing these variables to

zero at first order in perturbations (with asymptoticallt flat boundary conditions).

Constrain π = 0 elminates the trace of the canonical momentum. There remains
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the transverse-traceless sector hTTij as the independent propagating physical modes

(in the transverse gauge). The corresponding propagators are4

〈
hTTij h

TT
kl

〉
=

PTTijkl

ω2 − β~k 2 + β1~k 4 + β3~k 6
, (13)

where PTTijkl is the transverse-traceless projector.

Another important issue of the perturbative quantization is the distribution of

Fourier momentum in Feynmann diagrams. We recall that this is a theory with

second-class constraints, hence standard techniques of gauge field theories which

only have first-class constraints do not apply. One plausible scheme of quantizaton

is to solve the second-class constraints perturbatively. It can be shown that the

perturbative field variables used to solve the constraints end with a balance of zero

Fourier momentum4, hence when the solutions are substituted in the Lagrangian

they do not alter the order in momentum of the interacting terms, the weight in

Fourier momentum of the vertices is the same of the off-shell theory. These results

allow to evaluate the superficial degree of divergence of Feynman diagrams, since

the badly divergent diagrams are those with vertices of highest order, which is

the sixth order according to the power counting of the Lagrangian. The internal

lines scale also with sixth order according to the propagator (13). With these

considerations we may show4 that the superficial degree of divergence of the badly

divergent diagrams is given by the order 6. This implies that counter-terms of 6th

order in spatial derivatives must be added to the bare Lagrangian, but 6 is precisely

the order of the bare Lagrangian designed for power-counting renormalizability.

Thus, the theory passes the criterium given by the superficial degree of divergence

needed for the renormalization of the theory.

3. Gravitational waves and observational bounds

The coincidence in the number physical degrees of freedom between the kinetic-

conformal Hořava theory and GR raises interest on the behavior of the gravitational

waves in this theory. This was analyzed in5 using the equivalence of the large-

distance effective action with the Einstein-aether theory8. The Einstein-aether

theory implements the breaking of the Lorentz invariance keeping the gauge sym-

metry of general diffeomorphisms over spacetime by using a dynamic unit timelike

vector (the aether). The analysis of gravitational waves done in5 was achieved in

a gauge-invariant way, involving the aether field in the construction of the gauge

invariants. The first main result is that the transverse-traceless sector is propagated

with a wave equation,
√
β being the speed of the gravitational waves.

For the case of an isolated source, the dominant mode of its gravitational ra-

diation in the far zone can be deduced by applying the same techniques of GR.

The considerations on the source are the standard ones for a weak source: small

mass, slow velocity and negligible self-gravity. If Iij is the quadrupole moment given

by the 00 component of the energy-momentum tensor, then the leading contribu-
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tion for the generation of gravitational waves has the same structure of Einstein’s

quadrupole formula of GR,

hTTij =
κH

4πβr
PTTijkl

d2Ikl(t− r/
√
β)

dt2
, (14)

where κH is the coupling constant arising in front of the Hořava action (which we set

equal to one in Eq. (3), since that is a vacuum action). To get an exact matching

with the quadrupole formula of GR, we must set the coupling constants κH and β

equal to their GR values, κH = 8πGN and β = 1.

We may apply the analysis of the parameterized-post-Newtonian (PPN) expan-

sion for solar-system tests to the kinetic-conformal theory. It turns out that the

theory reproduces the same values of the PPN parameters of GR, except for the

parameters αPPN
1 and αPPN

2 , whose deviations from the zero value indicate Lorentz-

symmetry violation. For the kinetic-conformal Hořava theory these two constants

are given by5

αPPN

2 =
1

8
αPPN

1 = β − 1− α

2
. (15)

The current observational bounds10 on these parameters are |αPPN
1 | < 10−4 and

|αPPN
2 | < 10−9. Relation (15) demands that the strong bound, which is the one on

αPPN
2 , must be satisfied by both parameters. This condition is met if

α = 2(β − 1) + δ , (16)

where δ represents the narrow observational window for the αPPN
2 parameter,

i. e. |δ| < 10−9.
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