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Recent results based on renormalization group approaches to Quantum Gravity suggest that the
Newton’s and Cosmological constants should be treated as a dynamical variables whose evolution
depend on the characteristic energy scale of the system. An open question is how to embed this
modified Einstein’s theory in the Dirac’s theory of constrained systems. In this talk, the Hamiltonian
formalism for a renormalization-group scale dependent Newton’s and Cosmological constants is
discussed paying particular attention to Dirac’s constraint analysis. It is shown that the algebra of
the Dirac’s constraints is closed under certain conditions. Brans-Dicke theory is also studied as a
Dirac’s Constrained Dynamical System and it is confronted and contrasted with modified Einstein
Theory of General Relativity via Asymptically Safe Quantum Gravity. Applications to the physics
of the Early Universe is explicitly discussed assuming the framework of Asymptotic Safety. In
particular, it is shown that in the Minisuperspace case with FLRW metric, RG improved Friedmann
equations exibit Bouncing and Emergent Universes solutions. While, in the classical case, Emergent
universe solutions hold for closed topologies (K=+1), in the sub-Planckian regime they hold also
for flat (K=0) and open (K=-1) topologies.

I. INTRODUCTION

It is well known that classical General Relativity is a quite successful phenomenological theory at laboratory, solar
system, galactic and extragalactic scales and in general for length scales l � lPl ≈ 10−33cm, where lPl is the Planck
length. Singularity problems of Einstein’s equations at Planck length and the quantum behaviour of matter and
energy at small distances (high energy) suggest that a quantum version of the gravitational field (Quantum Gravity)
should be found. There are many different approaches to Quantum Gravity: String Theory, Loop Quantum Gravity,
Non-Commutative Geometry, Causal Dynamical Triangulations, Poset Theory, Asymptotic Safety etc.

As the Newton’s constant has a negative mass dimension, the perturbative quantization of General Relativity leads
to a (perturbative) non-renormalizable theory. In general, perturbative non-renormalizable theories have a number of
counter terms which increase as the loop orders. This implies that the renormalization process introduces infinitely
many parameters so that the resulting theory does not have any predictive power [1]. This is not a dead end, because
a perturbatively non-renormalizable theory might be renormalizable under a generalized notion of renormalizability
based on non-perturbative arguments. This non-perturbative renormalizability, introduced by K. Wilson [2], is related
to the existence of a Non-Gaussian Fixed Point (NGFP) which guarantee the finiteness of the theory in the ultraviolet
limit[3].

The Asymptotics Safety conjecture dates back to Weinberg [4]. He suggested that General Relativity might be a
non-perturbatively renormalizable Quantum Field Theory if the gravitational RG-flow approaches a non-trivial fixed
point in the high energy limit. He himself proved that NGFP exists in 2+ε dimensions [4]. In d=4 a NGFP exists
in the case of Einstein-Hilbert truncation [5]. The main idea of this approach is that if one has a classical action of
Gravity, in the Riemannian case, coupled with ai constants coupled to Oi(x, g) operators, x and g being, respectively,
the space-time coordinates and the metric tensor g [6],

S(M, g) =

∫
M

d4x
√
g

∞∑
i=0

aiO
i(x, g) , (1)

M is the four dimensional differentiable manifold. The renormalizable group is defined once one fixes an infrared
cutoff k and writes the renormalization group equations in terms of the dimensionless coupling constants ãi(k) and
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the β-functions in the following manner [6]

k∂kãi(k) = βi(ã1(k), ã2(k), ã3(k)...) (2)

A point ã? is a NGFP if it is a non trivial zero of the beta-functions, that is βi(ã?) = 0 ∀i and ã? 6= 0.
Once one has found a the NGFP, the next step is to linearize previous equation [6]

k∂kãi(k) =
∑
j

Bij (ãj(k)− ã?j(k)) , (3)

where one has assumed the following definitions:

Bij ≡ ∂jβi(ã?) , B = (Bij) . (4)

The general solution to the previous linear equation can be written in the following form

ãi(k) = a?i +
∑
I

CIV
I
i

(
k0

k

)ΘI

, (5)

where V I are right-eigenvectors, solutions of the eigenvalue equation (matrix equation)

B V I = −ΘIV
I (6)

ΘI being the critical exponents. Now, notice that the fact that one assumes ãi(k) 7−→ a?i when k 7→ ∞ requires
that CI = 0∀I in case Re ΘI < 0. The Ultra-Violet(UV) critical surface SUV is defined as the number of independent
renormalization group trajectories hitting the fixed point as k 7→ ∞. The dimension ∆UV of this surface is the
dimension of SUV . Said in another way, the dimension of the critical surface is the number of independent attractive
directions or, equivalentely, the number of eigenvalues Θ with Re ΘI > 0. The resulting quantum theory has ∆UV

free parameters. If this number is finite, then the theory is predictive as a pertinent renormalizable model with ∆UV

renormalizable couplings.
These considerations hold, in general, but has been introduced for the perturbative renormalization group (RG).

In the non perturbative case one starts from a Wilson-type, coarse-grained, free energy functional

Γk [gµν ] , (7)

where k is the infrared cut-off. Γk contains all the quantum fluctuations with momenta p > k and not yet of those
with p < k. The modes p < k are suppressed in the path-integral by a mass-square type term Rk(p2).

The behavior of the free-energy functional interpolates between Γk 7→∞ = S, S being the classical (bare) action, and
Γk 7→0 = Γ, Γ being the standard effective action. Γk satisfies the RG-equation, called also the Wetterich equation [7],

k∂kΓk =
1

2
Tr
[
(δ2Γk +Rk)−1k∂kRk

]
(8)

In general, since this RG-equation is quite complicate, one adopts a powerlul non perturbative approximation
scheme: truncate the space of the action functional and project the RG flow onto a finite dimensional space. That is
to say, one consider that the free energy functional Γk, formally, can be expanded in the following way

Γk[·] =

N∑
i=0

gi(k)kdiIi[·] , (9)

where Ii[·] are given ”local or non local functionals” of the fields and gi(k). In the case of gravity, the following
truncation ansatz is usually made:

I0[g] =

∫
d4x
√
g , I1[g] =

∫
d4x
√
gR , I2[g] =

∫
d4x
√
gR2 , etc. (10)
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The simplest truncation is the Einstein-Hilbert truncation which looks like

Γk = − 1

16πGk

∫
d4x

(
R− 2λ̄k

)
+ g.f.+ g.t. , (11)

here g.f. means classical gauge fixing terms, while g.h. are ghost terms. There are two running parameters Gk, the
Newton constant, which can be written in a dimensionless way as g(k) = k2Gk. In the same manner, the cosmological
constant λ̄k becomes λ(k) = λ̄k/k

2.
Inserting this ansatz into the flow (Wetterich) equation, one obtains ”a projection” onto e finite dimensional space

[3]

Tr[...] = (...)

∫
√
g + (...)

∫
√
gR+ ... , (12)

and then the following finite-dimensional RG equations

k∂kg(k) = βg(g, λ) (13)

k∂kλ(k) = βλ(g, λ) .

The solutions of this equations provide the scaling relation for the a-dimensional gravitational constant g(k) and
the a-dimensional cosmological constant λ(k).

In the same direction ADM formalism for Black Holes could result quite enlightening . Here a completely different
symmetry implies a different ADM foliation, which could, eventually, help to answer previous questions.

II. FUTURE DIRECTIONS

Hamiltonian (ADM) analysis of RG improved Einstein-Hilbert action with G and Λ as external, non geometrical
field, can be performed. It can be shown that if one requires that this theory behaves like the Hamiltonian theory
of Einstein General Relativity, that is the momentum constraints and the Hamiltonian constraint be the generators
respectively of the space diffeomorphisms on Σ and the time diffeomorphisms, then one cannot start from the ADM-
metric but from ADM metric in Gaussian normal coordinates.

An immediate application of the above considerations is FLRW cosmology in the minisupersapce approach using
Dirac’s constraint analysis. It generates sub-Planckian cosmological models via Asymptotic Safety. They exhibit
bouncing and emergent Universes. The latter ones are solution of the equations of motion also in cases K = −1, 0,
that are impossible to draw from classical General Relativity.

Although this analysis shows that RG improved Einstein-Hilbert action with G and Λ as external fields can be cast
in the Hamiltonian formalism only in the case of ADM metric in Gaussian normal coordinates, one can still legitimately
ask if there exists cases and/or particular foliations in which one does not need to loose space diffeomorphisms in
order to make sense of the Hamiltonian formalism. In order to throw light on this issue, it could be useful, following
the suggestions of section 2, to study the Hamiltonian formalism of the Branse-Dicke theory.
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