
Conclusions
Radially moving observers, conveniently described using our generalisations of Gullstrand-
Painleve and Lemaitre coordinates, determine interesting slicings of spacetime alternate to 
the static slicing inspired by Schwarzschild-Droste coordinates. Many familiar statements 
should require a qualifer "...according to the static slicing/observers" for clarity and 
accuracy. In future, I intend to study the quantum vacuum and Hawking radiation in these 
coordinates.
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Introduction
Many descriptions and interpretations of Schwarzschild-Droste spacetime assume the static 
foliation (given by t=const in Schwarzschild-Droste coordinates), but do not explicitly say 
so. We investigate the spacetime splitting due to "moving" observers, a contrast which 
emphasises the relativity of black holes. This is important conceptually and pedagogically, 
and avoids "neo-Newtonian" (Eisenstaedt) misconceptions. It has also proven useful in 
research: Gullstrand-Painleve coordinates have led to an interpretation of Hawking 
radiation as quantum tunnelling (Parikh & Wilczek).

 
Time slicings of black holes Colin MacLaurin

Length-contraction (and expansion)
A moving and static observer have relative 3-velocity given by the Lorentz factor:
 
 
The radial lengths obtained previously are factors of    and   relative to the static distance:
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Moving perspective: both the static 
observers and the distance between 
them are increasingly length-
contracted.
 

Static perspective: both the fallers and 
the distance between them are 
increasingly length-contracted as r 
decreases.
 

Observer families and coordinates

Generalised Lemaitre coordinates:
 
 
Use Schwarzschild coordinates for e=0 observers, since these are comoving (t=const).

The following coordinate systems are well-suited to these observers; T is the proper time: 
Generalised Gullstrand-Painleve coordinates:

Suppose spacetime is filled by a family of test particles, all freefalling radially inward with 
the same "energy per mass" e:
 
u is the 4-velocity field,   is the Killing vector field which is timelike for all r>2M, and so 
our parameter e is the corresponding invariant along a geodesic. We can classify the 
observers into "rain" which fall from rest at infinity, "hail" which start from infinity with 
initial inward velocity, and "drips" which fall from rest at finite distance (Taylor & Wheeler). 
There exists another type I dub "snow", which falls more 'slowly' than the others inside 
the horizon.
 
 
 

mist

  

Time for a distant observer

The Schwarzschild-Droste t-coordinate is often called the "time at infinity", meaning the 
proper time of a static observer at spatial infinity. Historically this led to misconceptions 
including infinite time to fall into the interior, and time running backwards there. But at
        (indeed for observers at different spatial infinity) it depends on the simultaneity 
convention. For our slicing and       , the time at infinity is 1/e dT. So to the question 
`How long is a raindrop's flight, for a distant observer?' we answer, in the e=1 case, `The 
same time as the raindrop itself measures!' (Czerniawski 2004)
 

The description "time and space swap roles inside the horizon" has inspired eloquent 
prose. For a given coordinate        the coordinate surface has normal vector
which has norm-squared                   . This determines the timelike/null/spacelike nature 
of the coordinate. So for Schwarzschild-Droste coordinates, indeed t and r swap roles. 
However for our new coordinates, T remains timelike everywhere.
 
But the coordinate vector has norm-squared which may have a
different nature if the metric is not diagonal. For instance, the r-coordinate vector is:
 
 
 
 
 
 
 
 
 
 
Coordinate "vectors" depend also on the other coordinates in the system. Similarly, an    
r-coordinate vector is not the (purely spatial) radial direction for an arbitrary observer.
 
 
 
 

Coordinate vectors and hypersurfaces

 

Coordinates Innerproduct∂r ·∂r = grr Interpretation

Schwarzschild 1− 2M
r
−1 spacelikefor r > 2M

timelikefor r < 2M
generalisedGullstrand-Painlevé

1
e2 spacelike

generalisedLemâıtre 1
e2(e2−1+ 2M

r ) spacelike
Eddington-Finkelstein
(null version) 0 null

Eddington-Finkelstein
(timelikeversion) 1+ 2M

r spacelike

3-Volume

Our observers preserve spherical symmetry, so the spatial volume inside the event 
horizon is      times the radial distance:
 
 
(Finch showed this for e>0.) More formally, this follows from the volume element:
 
 

 

Curvature of 3-space

The curvature of space is often depicted by a 2D surface embedded in Euclidean     with 
the same curvature. Take a constant "time" slice                and equatorial slice        . In 
cylindrical coordinates            the embedded surface z=z(r) has metric
 
 
Comparing, we obtain:
 

To static observers, space is a funnel, 
"Flamm's paraboloid".

To the falling family, space is a cone for
|e|<1. For |e|=1 it is a flat plane (c.f. 
Lemaitre 1932), and for |e|>1 it cannot be 
depicted by this method.

Radial distance

One might assume the measurement of spatial distance in relativity is perfectly 
understood, but is it? The textbook radial "proper distance" is:
 
 
However this is only the measurement of stationary observers (which have fixed r, 
including static observers). But for observers with arbitrary radial motion, this generalises 
to:
 
 
(Gautreau & Hoffmann showed this for 0<e<1.) This is consistent with the previous result 
since static observers have:
 
 
The distance relates the r-coordinate to the observer's frame, so the slicing is not by 
Schwarzschild time but adapted to the observer. Importantly, the "radial" 4-direction 
depends on the observer; the mix of "space" and "time" is relative. The following 
approaches for local distance are identical:
 
  - well-suited coordinates: if the time coordinate is proper time, set
  - spatial projector:
  - orthonormal tetrad frame 
  - radar metric
 
Caution: contracting the spatial metric tensor (projector or radar) with the 
"vector" (0,1,0,0) in Schwarzschild-Droste coordinates yields the following, which is the 
static observer's measurement of the moving observer's length:


