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A complete classification of papers , books and preprints concerning scattering of waves and 

particles by Black Holes would be given by following parameters: a) metrics examined, b) spin 

(Field’s spin scattered), c) particles: mass/massless, charged/uncharged, etc.  d) approach used, 

particularly: d1) weak gravitational field approach d2) exact metrics d3) quantum gravitational 

approach d4) exact mathematical  treatments, which contains rigorous but no final formula for 

scattering phases, amplitudes, or scattering(absorption) cross sections, see, e.g. [21] d5) applications 

for astrophysical situations. I can list here more   about 300 papers, or books , which does not cover 

points d4) and d5), but treat gravitational scattering. There is need also to mention that significant 

progress has been made in inverse scattering problem, when the metrics is found for a given 

scattering cross section.  Some important results has been obtained in 3 body classical and quantum 

scattering problem.  

To limit to direct scattering problem and to Schwarzschild metrics (or simplest scatterers as: 

Newtonian field of a point mass) there is need to tell, that there are few approaches to the problem, 

when means quantum mechanics, but classic scattering theory begun with a very complete study by 

Y. Hagihara of orbits in gravitational fields (1931). Only one paper I shall cite here which was less 

observed, namely by Mielnik, B. and Plebansky, J. (1962). A gold result in this area of research is 

an exact absorption cross section for photons by an exact Reissner-Nordstrom metrics with an 

arbitrary electric charge , obtained by N.R. Sibgatullin [20], unfortunately died in 2003.  The weak 

gravitational field approach  and interacting quantum fields approach was reviewed almost  

exhaustively recently in the book [2]. c) The exact gravitational field approach and approximate 

scattered fields.   This approach was developed for waves and particles (quantum mechanic) since 

1959 by Sir Ch. Darwin(1959, 1961, [3]), K.W. Ford and J.A. Wheeler (1959, [5]), A.B. Gaina 

(1980-1989 [7]-[8], [11]-[12]), F.A. Handler, R. Matzner (1980-1988), Cecile DeWitt-Morette and 

coauthors (1984, 1992  [6]), Decaninni, et all (2011). One of first results obtained using this 

approach– the absence of absorption  of scalar waves in a Schwarzschild gravitational field 

(Matzner, 1969) was so strange for Black Holes physicists, that Wheeler (1971 ) has soon shown 

that Black Holes absorb particles and waves and can form quasibound states (when � ≤ ���) 

around black holes.  All  approaches mentioned above were adopted by many researchers and results 

generally agree, except for some very particular cases. In 1987  [7] I have shown with a pupil, that 

computing scattering matrix would allow to calculate automatically by investigating the poles of the 

S-matrix the spectrum of quasibound states for mass particles. Generalizations for Dirac fields and 

exact metrics were given by Gaina (1980, 1983), Doran and Lasenby (2001). I would no discuss 

here absorption of scalar (mass) particles and spin1/2 particles examined in   [11-15].       

General background of the scattering problem in Black Holes spacetimes 

To compute the scattering cross section quantum mechanically in the short wavelength in a 

Schwarzschild field in a short wavelength limit for mass particles  I have used 1)  the variables 



separation in wave equations (Wave equation, Klein-Gordon, Dirac) and it is possible to generalize 

this for higher spins) 2) obtained analytical solutions to radial equations in the long wavelength limit 

or  I am writing the scattering phase  integral in the short wave limit  by a JWKB, which could be in 

general complex due to absorption 3) I am matching solutions in the long wavelength limit and 

compute the scattering phase, or calculate the phase integral , which , in general is given by an 

elliptic integral or elliptic integrals.  In some cases, I am showing bellow, a Born  perturbation 

procedure could be developed to evaluate the  scattering phase integrals to avoid calculations of 

elliptic integrals. 

We start with a Schwarzshild metric, responding to a mass �  of a Black hole:  

�	� = �1 − ������ � ��� − �1 − ������ ��� ��� − ��(��� + 	�������)                         (1) 

The events horizon of this metric is placed at � = �����                                               (1.a) 

We shall use below the system of units � = ℏ =  = 1  if not a opposite is evident. 

The most important case  when  the wave equations and relativistic Quantum mechanical equations  

can be solved analytically is the case of long wavelength limit. In this case not only the massless  

Scalar, Electromagnetic and s=2 (gravitational) and mass Klein-Gordon wave equations could be 

solved analytically in terms of Coulombian wave functions and Heun’s (or hypergeometric 

functions), but also  mass Dirac equation and mass Proca equations could be solved analytically first 

in a Kerr-Newman spacetime, and second in a  Schwarzschild spacetime be included here.  

Scattering and absorption cross sections could be obtained in all this cases. 

This procedure (1980, 1988) gives good results for ultrarelativistic spinless particles (or spinless  

photons ), while in a case of non-relativistic particles it gives an error to about 18, 75% [12].  But it 

is normally to expect, that spin effects would arise in a higher approximation if take the spinless 

case as the null approximation . This is just the case, when the scattering occur effectively  by a 

parabolic barrier, while the region just close to the horizon, which could be important for spin ½ 

particles (or fermions in general)  does not contribute essentially. Otherwise, a potential well could 

arise between the centripetal  potential barrier and the horizon, which is not related with Newtonian 

–like (or combined Newtonian-like -Coulombian-like) potential well.  Then the case of bosons and 

fermions should be examined with care, taking into  account, that fermions does not support 

superradiation . Only in some space-time regions results for bosons and fermions (scattering phases, 

transmission coefficients)  agree sufficiently well. 

Bellow, I am developing a Born approximation procedure  for the scattering phases calculation valid 

in the  short wavelengths limit  ! ≡ �/$ ≪ &� ≡ �����   all the speeds of the particles  ( 0 < )� ≤ 1) 

and which gives satisfactory result for all the cases. 

Let us consider the Klein –Gordon equation  in the Schwarzschild metric (gravitational external 

background)[2].The Wave function of the Klein-Gordon equation could be represented in the form:  



Φ*,,,-./012,3(�)435(6)7)829                                                                          (2) 

where :,-(�) – are the spherical harmonics.  The scattering amplitude and the cross section can be 

computed with the exactitude of a constant phase angle using the scattering angle calculated before. 

In view of the calculation of  the constant phase we must apply consequently the JWKB method .  

The radial part of the wave function &*,,(�) satisfies the Regge-Wheeler equation: 

 

;�1;�∗� +  (=� − >?,,� (�))& = 0                                                                (3) 

 where, 

;�∗
;� = (1 − ��� ) ��                                                                                  (4) 

 

@,�(�) = −=� − �1 − ��� � ��� + ,(,A�)�� + ���� �                                 (5) 

 

Let us decompose the wave function of a stationary state into partial waves  (4). We obtain a 

standard expression for the  scattering amplitude: 

B(�) =  ��CD ∑ (2G + 1) exp(2�K,) L,(�M	�); ∞,.O     � ≠ 0   and angle:   �(G) = − �;Q3;,     (6) 

Where  R = S=� − T� = =)  is the relativistic wave vector, while K, is the scattering phase , 

responding to asymptotic behavior of the radial function  

&?,,(�) = 2sin (R� − X,� + K,)   when � → ∞                                    (7) 

and could became complex. Such complex behavior could take place in systems with absorption. 

Obviously in systems with events horizons, as in cases of Black Holes, the absorption could be 

small, when the scattered particles meat a height potential barrier, and could be great when such a 

barrier is small, or is absent at all.  In the last case, meanwhile, could take place an over barrier 

reflection, which  lead to reversing of the magnitudes of absorption/reflection ratio. If one suppose 

that an absorption take place on the events horizon  � = �����     the scattering phase would became 

complex, while the imaginary part would describe the absorption of the partial wave inside a 

horizon. These imaginary part of the phase shift is needed for the calculation of the absorption cross 

section partial and total. If the imaginary part of the phase shift is changing sign, a particles 

generation can take place. 

@,(�) = (=�)� − �1 − ��� � ��� + Z�
��� = =� −  >?,,�                      (8) 



where the following substitution has been used: 

G(G + 1) → �G + ���� ≡ [� for  G ≫ 1                                            (9) 

The function >?,,�   could be considered an effective potential energy of a particle in the field of a 

black hole,  in a quasiclassical limit.   In a strongly classical limit , when  [ < [�, where  

@Z](�-^_) = 0,  a fall of particles into the back hole take place , while the state  with  [ = [� is 

responding to capture of particles on unstable circular orbit [2, 16]. If `�K, > 0 such a way that |exp (2�K,)| ≪ 1 . For particles  with [ > [� ≫ 1 the tunneling is weak, and in this case the JWKB 

method is allowed  to calculate the scattering phases , see [5, 16]. The real part of scattering phases 

can be calculated from  the well known Quantum mechanical formula: 

&cK, = d S@,(�)��∗ − d eR� − Z�
��∞�� ��∞��                                            (10) 

The second integral in the formula above gives us the phases of free motion;  ��  means the biggest 

of 2 turning points: @Zf��,�g = 0 , while �� > ��. The first integral in  the last formula for the real 

part of the scattering phase  contains a characteristic for long range potentials  diverging part of the 

phase: 

~ �D��AiD G�2R� ,   where j = ���                                                   (11) 

Scattering for intermediary angles, backward and forward glory scattering 

Let us mention that it is reducing to elliptic integrals in the case of Black Holes metrics such as 

Schwarzschild and analytic calculations are possible only in the limiting cases: [ ≫ [� and [ ≥ [�. 

This is opposite to the well studied cases of Coulombian (Newtonian)-like fields non relativistic or 

relativistic.  First case is corresponding to very great impact parameters when the scattering angle 

has a Rutherford-like shape with corrections, while the second case corresponds to spiral orbits near 

the unstable circular orbit. This case was studied carefully by C. DeWitt–Morette and coauthors [4] 

for massless fields and arbitrary spins. A generalization of this case for mass spinless particles  has 

been given in [5]. A general formula  for backward glory scattering for  mass particles of any spin 

would have a form: 

;l;Ω
= Xm 1n�

���-�� *o �� *1n�ℏ� pq�r� �	��� *1n��ℏ�  B�                                         (12) 

where s-is particles spin, while p and B are dimensionless functions of the velocity of particles at 

infinity, which have the form B� = f�Ast�gu �o AfstvA�Ot���g�t�  .  This function  has the limits 16 for w = 0  and 27 for w = 1.The function A is a little bit more complicated: 



p(w) = mxu(yz)uz/ �o 7_{���Xz/ �o �
(��z)|�}z/ �o A(�z��)/ �o �~v , where � = �1 − ��(-�)�

Z]� �� �o = ��Ammt�A}�tv�}f�Ast�gu �o
s(��t�) � (13) 

The limits of the function p(w) are 17 for w = 0 and 4.06 at = 1 , while the limits of the function  �  

are 0.5 for w = 0, and 1 for w = 1.  As a particular result of interest: the backward glory scattering 

for photons is exactly 0, as was shown by B. Mashhoon [9] due to interference of the waves with 

opposite polarizations.  As we told before the forward glory scattering which also decreases fast 

with rotation number around a black hole is masked by Rutherford- type (but gravitational on 

nature) long range scattering. But if we could avoid Newtonian-like gravitational field here also 

glories could be observed for particles and waves.  

The case of spiral motion could present a special interest, as it comprises orbits, with many spirals 

around a Black Hole. The same orbits could generate instabilities of  kinematic nature, bistabilities, 

attractors and stochastic chaos. A small variation of the impact parameter could dramatically change 

the fate of a particle: it could reflect and escape to infinity, or it could fall irreversibly into the Black 

Hole if the particle is spinless (Bose-particle)  one, or be captured in a second potential well, 

between the horizon of the Black Hole and the unstable orbit radius. The problem is how the 

limiting cases rely with elliptic integrals?  If this relation is one caused by physical parameters of the 

problem, then the calculation of the elliptic integrals should give the same result as the application  

of a perturbation scheme, which could be named iterative , or Born.  The well  known from the 

Quantum mechanics in flat spacetime Born method is not applicable rigorously speaking because of 

very strong gravitational Black Hole’s field. It is important to understand when, the Born 

approximation could be applied.  This is rather a mathematical artificial method of solving  elliptic 

integrals. 

I shall develop below  a perturbative  method of solving the main General-relativistic- Quantum 

mechanical formula (14), which was used before by Sanchez for massless particles. This  formula is 

important since it includes also the tortoise coordinate and implicitly take into account the curvature 

of the space-time. As I told before, the main advantage of this methods is: they allow to avoid 

computations of long elliptic integrals. The scattering amplitude  could be represented as a sum: 

B(�) = BZ≫Z](�) + BZ](�) +  BZ�Z](�)                                       (14) 

The first part of the amplitude represents the contribution of partial waves with great impact 

parameters and it causes the Rutherfordian tail of the scattering amplitude. Corrections to this 

amplitude due to relativistic gravitational effects would be taken into account below.   

The magnitude of the spiral cross sections decreases significantly with increasing number of spiral, 

so that one spiral cross section obviously dominates.  

The third part  represent partially diffraction phenomena and spiral cross section, which could be 

important only at angles � → �. Diffraction  phenomena on Black Holes could be treated as 

diffraction on Black (absorbing) Nuclei, see: [10] and [13] . The scattering amplitude will be: 



   B̂ �r(�) = CZ]D6 q�([��),   [ � ≡ G� + �� ;     [�� ≪ 1                         (15) 

It is easy to seen , that  the absorption scattering amplitude at small angles  will be masked by 

Rutherford-like scattering amplitude, while at greater angles it would have an oscillating character 

with a slowly decreasing amplitude. In spite of the formula (17) is applicable rigorously speaking 

for angles � ≪ �Z]    the authors of [10, 13]. has found diffraction maxima for electrons scattered by 

black nuclei for angles 2 < � < 3  . Similar diffraction phenomena can be found by numerical 

calculations on Black Holes. For 
�-��� > 1     the maxima are deformed  from their obvious 

diffraction shape, while in the opposite case, say   
�-��� ≈ 0.2    , the maxima are very like to 

diffraction ones.  

Calculation of phase integrals and scattering amplitudes for small angles scattering 

In this first case , when  [ > [� , the term  ~��}  in the effective Regge-Wheeler function 

(respectively into the effective potential ) could be examined  as a perturbation. The physical reason 

for such an approximation consist in the smallness of the short range interaction    ~��} as 

compared with centripetal term and  especially with Coulombian-like (Newtonian-like) term which 

goes as ~��� . 

This allows us to calculate the  exact phase integral (14) without elliptic functions and integrals. Let 

us represent the Regge-Wheeler function in a form: 

@,(�) = @ZO(�) + @Z�(�)                                                                      (16) 

@Z(O)(�) = R� + �i� − Z�
��, with [ = G + 1/2                                           (17) 

and                                                         @Z�(�) = ��Z�
�u                            (18) 

In this case the integral (13) takes the form 

&cK, = �2R� + j Ro �G�2R� + K,O + K,�                                                 (19) 

where 

K,O + �2R� + iD� G�2R� =  d e���(�)
(���� �o ) �� − d eR� − Z�

�� ��∞�]
∞��               (20) 

 

K,� ≅ �� d ��/(�);�
(����0 )e���

∞��                                                                            (21) 



A perturbative method of calculation of the phase integral (20-21) was developed in [11,12]. But it  

is sensible to calculation of the root �� of the Regge-Wheeler function =� − >?,,� (�) . Let us consider 

another method of  calculation of the phase integral. It is perturbative also, but not sensible to the 

roots. I shall consider here the term 

��-���       as a perturbation, while the term 
��Z�

�u       would be considered exactly.  The phase integral 

except the free phases would have the form 

K,�� = d e?��-�������0 ���
0�A����0����0

≈ ) d e?�������0 � ��
)�0� ;�

����0
�∗

�� + �)�∗
�� d -��;�

(����)e?�������0 � ��
)�0�

�∗
��    (22) 

The following rule: 

 K,�� + d eR� − Z�
�� �� =  d S@,��∗ − d eR� − Z�

�� ���∗
��

�∗
��

�∗
��                                     (23) 

holds. 

The integral (22) is including free phases, as well as logarithmically divergent for [ ≫ 1 terms. 

As obviously  w = e1 − -�
?� . The first integral in the right part of the equation (24) was calculated 

by Sanchez in the article [13], but the parameter 
Z�
)� ≡ ℒ�  of Sanchez.  Let us preserve below only 

terms of the order~  
�Z . The result of the calculations of the phase shift is:  

K,�� ≅ −2R�[�[ − R� + ��Xs D���
Z                                                 (24) 

The total scattering phase is 

K, = − �2R� + iD� G�[ − R� + }Xs (�?��-�)Z                                    (25) 

The elastic scattering amplitude, which is very important for interference effects account is: 

B(�) = ���D�A���
?t6� �1 + }Xm (�?��-�)��6

��D�A���� exp �� �−2 �2R� + iD� G� ����D�A���
6 � + 2 �2R� + iD� −

2=w� + }Xs f�?��-�g��
��D�A��� � − Xm��                                                                                (26) 

The classical scattering angle will be 

�(�) = − �;Q3;, = �1 + �)� � 1�� + Xm �?��-�
?��-� �1�� ��

                                        (27) 



which is Einsteinain one [1] with a correction, coinciding with one calculated by methods of 

classical mechanics on Black Hole background [18].  

General relativistic corrections and contributions of nonlinear and nonlocal scattering effects  

Such effects are due to own Energy-momentum tensor of the scattered (by a Schwarzshild centre) 

field. There is need to mention that the case of an electrically charged particle is very distinguished 

from a case of an uncharged particle. External gravitational field can be disturbed by the mass of the 

scattered particle as well as (evidently) by the electric charge of the scattered particle.  Estimations 

for an electrically charged particle in an external gravitational field has been given by De Witt and 

Brehme (1960), De Witt and  DeWitt-Morette (1964), while generalizations for  mass particle and 

Newtonian external field has been given in [17].  

For an electrically charged particle the DeWitt-Brehme-deWitt-Westpfahl , corrected by my (and 

Collins-Delbourgo-Williams [18])  general relativistic contribution cross section will be: 

;l;Ω = �1�f�D�A-�g
mD�rC������ �� + }X�y f�D�Am-�g1��D�6u − G�,� ���- X}� }D�A�-�

D�rC�u����                                   (28) 

Similar effects appears in double Pulsar gravitational radiation, which were examined by Damour, 

but they are due to effect of gravitational waves on the pulsar orbit (1983). For mass and uncharged 

particles the estimations  by Westpfahl show, that nonlinear effects appear in the same order of the 

scattering amplitude as corrections to Einstein effect ∆�~ &�� ��o , i.e. the corrections to differential 

scattering cross section are proportional to 
�6u. The additional scattering phase would be of the order  

D���
Z  but it is not calculated  in [17]. There is no also there a calculation of the scattering amplitude. 

We can only suppose, that the increasing of the differential scattering cross section in a case of 

gravitational non-linear  and non-local interaction means that it is equivalent to an additional 

attraction and would increase the  differential scattering cross section and scattering angle.   

The correction obtained in [17] is:  

�;l;Ω��¡�,C� = 1��
}�rC�u����

XfmAt�gt� ≅ 1��m6u XfmAt�gt� = 1��m6u Xf�?��-�g?��-�                                       (29) 

The additional scattering angle is: 

	�� �6�� = }Xs ��� �� mAt�
t� = }X}� �1�� �� �?��-�

?��-�  ,      or   (∆�)�¡�,C� ≅ }X�y �1�� �� �?��-�
?��-�      (30)  

which is exactly the same as [27], calculated above. Then the total scattering cross section for a 

scalar electrically charged particle by a Schwarzschild Black Hole for small angles will be 

;l;Ω = �1�f�D�A-�g
mD�rC������ �� + }Xs f�D�Am-�g1��D�6u − G�,� ���- X}� }D�A�-�

D�rC�u����                                            (31) 



If   �� ≤ 2 ∙ 10����,�and 0.5 ∙ 10�� -��¤3� ≤ 	�� �6�� ≤ 1 the correction due to electromagnetic self 

action could be comparable with the Einsteinian angle for angles not equal to 0. At the same time 

there are no chances to observe general relativistic correction at small angles. Only glories or 

diffraction effects could distingue them from Einsteinian (twice amplified Rutherfordian shape 

scattering) . Otherwise the total cross section would depends on the phase shift between the general 

relativistic phase correction (32) and  nonlinear  and nonlocal self-action phase, which is 

contributing by an additional    

∆��,C�(�) = }X�y �?��-�
?��-� �1�� ��

         

So that these effects would change the correction. The total scattering angle is  

    �(�) = �1 + �)� � 1�� + X� �?��-�
?��-� �1�� �� −  �1 + �)� � 1�� X��

�y �¤3�
-�         (32)                                                         

The first term is Einsteinian angle for mass particles. The second is a next general relativistic and 

gravitational self action correction ( [18], [11-12], [17]) and the last is  electromagnetic self-action 

correction [19, 17] . Let us mention that electromagnetic self action acts as repulsion, or adding a 

charge to the test mass the scattering angle would decrease from its Einsteinian value, while general 

relativistic correction and nonlinear gravitational self-action   had an additional attractive character 

and increase the scattering angle. 

Conclussions 

The calculation of scattering phases, amplitudes, differential and total cross sections by Black Holes 

background , when they are described by exact metrics (and no weak field approach, or calculation 

of diagrams involving gravitons and other elementary quanta)  for mass particles can be made by a 

combination of a JWKB method and perturbation technics, which allow to avoid hard calculation of 

elliptic integrals. No any approximation of the potential is allowed, as some approximations could 

give errors up to 19%. Results obtained agree in the limits with known results for massless particles. 
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