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In this talk I will explore the consequences of the gravity-thermodynamics

connection for an arbitrary null surface and highlight the thermodynamic sig-
nificance of various geometrical quantities. In particular, I will demonstrate

that: (a) A conserved current, associated with the time development vector

in a natural fashion, has direct thermodynamic interpretation when evaluate
on null surfaces. (b) Three different projections of a suitably defined gravi-

tational momentum related to an arbitrary null surface in the spacetime lead
to three different equations, all of which have thermodynamic interpretation.

The first one reduces to a Navier-Stokes equation for the transverse drift ve-

locity. The second can be written as a thermodynamic identity TdS = dE +
P dV. The third describes the time evolution of the null surface in terms of

suitably defined surface and bulk degrees of freedom. The implications will be

discussed.
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The key conclusions that we will reach in this talk are as follows:

• There is considerable amount of evidence to suggest that gravita-

tional field equations have the same status as, say, the equations of

fluid mechanics. They describe the macroscopic, thermodynamic,

limit of an underlying statistical mechanics of the microscopic de-

grees of freedom of the spacetime. The macro and micro descrip-

tions are connected through the heat density Ts of the spacetime.

Here, the temperature T arises from the interpretation of the null

surfaces as local Rindler horizons. The entropy density is a phe-

nomenological input, the form of which determines the theory. For
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a very wide class of theories, it can be defined in terms of a function

F (Rcd
ab, δ

i
j) built from (2,2) curvature tensor Rcd

ab and the Kronecker

deltas, as:

s = −1

8

√
qP ab

cd εabε
cd; P ab

cd =
∂F

∂Rcd
ab

; ∇aP
ab
cd = 0 (1)

• Given a Vector field va, one can construct three currents: (a)

the Noether current Ja(v), (b) the gravitational momentum P a(v)

and (c) the reduced gravitational momentum Pa(v). Interestingly

enough, one can attribute thermodynamic meaning to these quan-

tities which are usually considered to be geometrical. For example,

the conserved current Ja, associated with the time-development

vector ξa of the spacetime, leads to a conserved charge (i.e., inte-

gral of uaJ
a(ξ) defined either on a spacelike surface or on a null

surface) that can be related to the boundary heat density Ts, where

T is the Unruh-Davies temperature and s stands for entropy den-

sity.

• One can also define the notion of gravitational momentum P a for all

the Lanczos-Lovelock models of gravity such that∇a(P a+Ma) = 0

(where Ma is the momentum density of matter) for all observers,

leads to the field equation of the Lanczos-Lovelock model. This

generalizes a previous result for general relativity.

• The field equations can also be derived from a thermodynamic vari-

ational principle, which essentially extremises the total heat density

of all the null surfaces in the spacetime. This variational princi-

ple can be expressed directly in terms of the total gravitational

momentum, thereby providing it with a simple physical interpre-

tation.

• One can associate with any null surface the two null vector fields

`a, ka with `ak
a = −1 and `a being the tangent vector to the con-

gruence defining the null surface, as well as the 2-metric qab =

gab + `akb + `bka. These structures define three natural projec-

tions of the gravitational momentum (P a`a, P
aka, P

aqab), all of

which have thermodynamic significance. The first one leads to the

description of time evolution of the null surface in terms of suit-

ably defined bulk and surface degrees of freedom; the second leads

to a thermodynamic identity which can be written in the form

TdS = dE + PdV ; the third leads to a Navier-Stokes equation for

the transverse degrees of freedom on the null surface which can be
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interpreted as a drift velocity.

These results again demonstrate that the emergent gravity paradigm

enriches our understanding of the spacetime dynamics and the structure

of null surfaces, by allowing a rich variety of thermodynamic backdrops

for the geometrical variables.
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