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In this talk I will explore the consequences of the gravity-thermodynamics
connection for an arbitrary null surface and highlight the thermodynamic sig-
nificance of various geometrical quantities. In particular, I will demonstrate
that: (a) A conserved current, associated with the time development vector
in a natural fashion, has direct thermodynamic interpretation when evaluate
on null surfaces. (b) Three different projections of a suitably defined gravi-
tational momentum related to an arbitrary null surface in the spacetime lead
to three different equations, all of which have thermodynamic interpretation.
The first one reduces to a Navier-Stokes equation for the transverse drift ve-
locity. The second can be written as a thermodynamic identity TdS = dE +
P dV. The third describes the time evolution of the null surface in terms of
suitably defined surface and bulk degrees of freedom. The implications will be
discussed.
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The key conclusions that we will reach in this talk are as follows:

e There is considerable amount of evidence to suggest that gravita-
tional field equations have the same status as, say, the equations of
fluid mechanics. They describe the macroscopic, thermodynamic,
limit of an underlying statistical mechanics of the microscopic de-
grees of freedom of the spacetime. The macro and micro descrip-
tions are connected through the heat density T's of the spacetime.
Here, the temperature T arises from the interpretation of the null
surfaces as local Rindler horizons. The entropy density is a phe-
nomenological input, the form of which determines the theory. For
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a very wide class of theories, it can be defined in terms of a function
F(RgY,6%) built from (2,2) curvature tensor RS} and the Kronecker
deltas, as:

oF
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e Given a Vector field v®, one can construct three currents: (a)
the Noether current J*(v), (b) the gravitational momentum P¢(v)
and (c) the reduced gravitational momentum P*(v). Interestingly
enough, one can attribute thermodynamic meaning to these quan-
tities which are usually considered to be geometrical. For example,
the conserved current J¢, associated with the time-development
vector &% of the spacetime, leads to a conserved charge (i.e., inte-
gral of u,J*(§) defined either on a spacelike surface or on a null
surface) that can be related to the boundary heat density T's, where
T is the Unruh-Davies temperature and s stands for entropy den-
sity.

e One can also define the notion of gravitational momentum P¢ for all
the Lanczos-Lovelock models of gravity such that V,(P*+M?%) =0
(where M® is the momentum density of matter) for all observers,
leads to the field equation of the Lanczos-Lovelock model. This
generalizes a previous result for general relativity.

e The field equations can also be derived from a thermodynamic vari-
ational principle, which essentially extremises the total heat density
of all the null surfaces in the spacetime. This variational princi-
ple can be expressed directly in terms of the total gravitational
momentum, thereby providing it with a simple physical interpre-
tation.

e One can associate with any null surface the two null vector fields
Ly, ko with £,k® = —1 and £, being the tangent vector to the con-
gruence defining the null surface, as well as the 2-metric q,, =
Gap + Loky + Lyk,. These structures define three natural projec-
tions of the gravitational momentum (P%,, P%k,, P%qq), all of
which have thermodynamic significance. The first one leads to the
description of time evolution of the null surface in terms of suit-
ably defined bulk and surface degrees of freedom; the second leads
to a thermodynamic identity which can be written in the form
TdS = dE + PdV; the third leads to a Navier-Stokes equation for
the transverse degrees of freedom on the null surface which can be
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interpreted as a drift velocity.

These results again demonstrate that the emergent gravity paradigm
enriches our understanding of the spacetime dynamics and the structure
of null surfaces, by allowing a rich variety of thermodynamic backdrops
for the geometrical variables.
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