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I. INTRODUCTION

Thermodynamics has proven to be a powerful tool to give a physical interpretation of the integration constants
of Einstein’s equations characterizing a black hole spacetime, in introducing its extensive parameters (global charges
and entropy) and its intensive ones defined on the horizon (temperature, electric potential, etc.). The first law then
tells us how a black hole readjusts its equilibrium configuration when interacting with its environment.
On the other hand, the dynamics of interacting (non rotating) compact objects relies on reducing them to point
particles endowed with an effective mass parameter. In the case of a general relativistic Schwarzschild black hole, the
interpretation of this parameter seems straightforward since it identifies to the Schwarzschild mass, which is the only
integration constant at hand.
Consider now as an example Einstein-Maxwell-dilaton theories, which consist in supplementing general relativity with
a scalar field and a (non-minimally coupled) vector field. Such theories allow for the existence of hairy black hole
solutions depending no longer on one, but on three integration constants. Their reduction to point particles was
recently performed in [1] and involves a scalar-field-sensitive mass m(ϕ) a la Eardley [2]. The explicit calculation
of this black hole “sensitivity” includes a constant parameter µ which identifies to the Schwarzschild mass when the
hairs are cut off.
We will show that this constant µ must be defined in terms of the entropy of the black hole alone. This can be
understood thus: Eardley’s m(ϕ) modeling means that the black hole is moving adiabatically in the fields of its
companion; this will imply that it satisfies the first law of thermodynamics; moreover, the specific form of m(ϕ)
previously obtained in [1] will impose that it exchanges no mass nor charge with its environment. Therefore, its
entropy will remain constant and hence, can be related to µ.
Returning then to the general relativistic Schwarzschild black hole, this result shows that the constant parameter
describing it as a point particle must not be interpreted as its mass but rather be related to its entropy. Since the
second law tells us that the entropy must increase, this means that, at a better, non adiabatic approximation, its
effective mass can no longer be taken as a constant.

II. THE EXAMPLE OF EMD BLACK HOLES AND THEIR REDUCTION TO POINT PARTICLES

The vacuum Einstein-Maxwell-dilaton action of gravity is taken to be, see [3–5]:

16π I[gµν , Aµ, ϕ] =

ˆ
d4x
√
−g
(
R− 2gµν∂µϕ∂νϕ− e−2aϕF 2

)
, (II.1)

where g is the determinant of the metric gµν , R is the Ricci scalar, where Fµν = ∂µAν − ∂νAµ with F 2 = FµνFµν ,
and where a parametrizes the theory.
The field equations derived from the action (II.1) are :

Rµν = 2∂µϕ∂νϕ+ 2e−2aϕ
(
F λ
µ Fνλ −

1

4
gµνF

2

)
, (II.2a)

Dµ

(
e−2aϕFµν

)
= 0 and �ϕ = −a

2
e−2aϕF 2. (II.2b)

The “electrically” charged, static, spherically symmetric black hole solutions of the equations above which will
best illustrate the correspondence between their thermodynamics and dynamics were found in [3–5], and read, with
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r
, Ai = 0 , ϕ = ϕ∞ +

a

1 + a2
ln
(

1− r−
r

)
.

In order to be able to address the post-Newtonian dynamics of two interacting EMD black holes, we have to explicitely
include them as sources in the action. They were phenomenologically replaced in [1] by point particles described by
the following “skeleton” action:

Ipp[gµν , Aµ, ϕ, {xµA}] = I −
∑
A

ˆ
mA(ϕ)dsA +

∑
A

qA

ˆ
Aµ dx

µ
A , (II.4)

where I is given in (II.1), dsA =
√
−gµνdxµAdxνA, and where xµA[sA] is the worldline of the skeletonized black hole

A. The parameter qA is taken to be a constant in order to preserve the U(1) symmetry of the full action. As for
the scalar-field-sensitive, effective, “mass” function mA(ϕ) it is taken to be a function of the value of the scalar field
at the location of the particle A. The calculation of such mass functions is standard when the compact object is a
neutron star, see e.g. [6] and [7]. Let us recall here briefly how it was, for the first time, computed in [1] when the
compact object A is the EMD black hole described above.
The field equations derived from (II.4) are the same as (II.2) but supplemented by point source terms. They were
solved in [1] in the near-worldline region of the particle A, in its rest frame, and at linear order around a background
solution consisting of an asymptotically flat spacetime, a vector field which can be “gauged away” to zero, and an
asymptotic scalar field environment ϕ∞ that is imposed by the faraway companion B. The solutions were then
identified to the EMD black hole solution (II.3) at leading, O (1/r), order to yield (dropping, from now on, the index
A):

q =

√
r+r−
1 + a2

e−aϕ∞ , (II.5a)

m(ϕ∞) =
1

2

(
r+ +

1− a2

1 + a2
r−

)
, (II.5b)

dm

dϕ
(ϕ∞) =

a r−
1 + a2

. (II.5c)

The system (II.5) is integrable : indeed, expressing r+ and r− in terms of m and dm/dϕ using (II.5b) and (II.5c),
and injecting the result into (II.5a) gives the first order differential equation[(

dm

dϕ

)(
m(ϕ)− 1− a2

2a

dm

dϕ

)]
ϕ=ϕ∞

=
a

2
q2e2aϕ∞ . (II.6)

This differential equation can be solved for all a, see [1]. The solution reads as F [m(ϕ∞), q, ϕ∞, a] = µ2 where the
explicit form of F can be found using e.g. Mathematica and where µ is an integration constant. In the case a = 1,
which is enough to illustrate our purposes, the solution simply is

m(ϕ) =

√
µ2 + q2

e2ϕ

2
, (II.7)

where the index ∞ has been dropped since the scalar background ϕ∞, imposed by B, can have any value. One
can then address the post-Newtonian dynamics of the two black holes and, for example, compute the two-body PN
Lagrangian, see [1].
A question left pending at this stage is the relationship between the constants q and µ characterizing the skeletonized
black hole and its extensive parameters, that is, its electric charge Q, mass M and entropy S.

III. THERMODYNAMICS VERSUS DYNAMICS OF EMD BLACK HOLES

The first law of thermodynamics obeyed by EMD black holes is found in the standard way:
Their temperature T is defined as

T ≡ κ

2π
=

1

4πr+

(
1− r−

r+

) 1−a2

1+a2

, (III.1)
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where κ is their surface gravity, with κ2 = − 1
2 (∇µξν∇µξν)r+ , and ξµ = (1, 0, 0, 0) being the timelike Killing vector.

Their electric potential is

Φ ≡ At(r →∞)−At(r+) =

√
r−

(1 + a2)r+
eaϕ∞ . (III.2)

The action for the metric being Einstein-Hilbert’s, the entropy S of the black holes is the fourth of their horizon area
A+:

S ≡ A+

4
= πr2+

(
1− r−

r+

) 2a2

1+a2

. (III.3)

As for the global charges associated to these solutions, that is, their electric charge Q and mass M , they can be
obtained within various approaches, e.g. the Hamiltonian one as developped by Regge-Teitelboim [8] or the Lagrangian
one as developped by Katz [9, 10]. As usual in scalar-tensor theories of gravity, the scalar field contributes to the
on-shell Hamiltonian at infinity so that

Q =

√
r+r−
1 + a2

e−aϕ∞ , (III.4a)

M =
1

2

(
r+ +

1− a2

1 + a2
r−

)
− a

1 + a2

ˆ
r−dϕ∞ . (III.4b)

As one can see, M is the sum of the ADM mass (which identifies to one-half the O(1/r) coefficient of grr at spatial
infinity) and of a scalar contribution [11–13] (which is called the scalar charge in [14]) see, e.g., [15, 16].
With all these definitions in hand, it is easily checked that the variations of S, Q, and M with respect to r+, r− and
ϕ∞, are such that the following identity holds (which is an equivalent rewriting of the first law in [14]):

TδS = δM − ΦδQ . (III.5)

We show now how the first law of thermodynamics (III.5) justifies the skeletonization of EMD black holes introduced
in section II and provides an interpretation of the constants q and µ that characterize it.

Comparing (III.4a) and (II.5a) we first see that we must identify the constant q, called qA in the skeleton action
(II.4), to the global electric charge Q of the black hole. The significance of this identification is that the dynamical
evolution of the skeletonized black hole is such that its charge remains constant, δQ = 0.

Second, the variation of the global black hole mass M , when interacting with its environment, follows from (III.4b)
and reads

δM =
1

2
δ

(
r+ +

1− a2

1 + a2
r−

)
− a r−

1 + a2
δϕ∞ , (III.6)

which is zero when taking into account (II.5b) and (II.5c). This means that the black hole global mass remains
constant as well during its dynamical evolution, δM = 0 (while the ADM mass and “scalar charge” are not separately
conserved).

Therefore, the skeletonization of black holes proposed in (II.4) amounts to describing them as remaining isolated
when, for example, they orbit around a companion.

Finally, the first law (III.5) tells us that, since δQ = 0 and δM = 0, the entropy of the black hole remains constant
as well : S = const. This is the main result of this paper, which shows that when one reduces a black hole to a point
particle a la Eardley (II.4), one in fact describes a black hole whose equilibrium configuration readjusts adiabatically
when interacting with its companion, such that is mass M , charge Q, and hence entropy S remain constant.

Therefore, it must be possible to define the parameter µ appearing in the “mass” function m(ϕ) when integrating
(II.6) as a function of the entropy S only (or, equivalently, the “irreducible mass” Mirr [17, 18]). That this is
so can be shown for all a: indeed, inserting the expressions (II.5a) and (II.5b) for q and m(ϕ) in the solution
F [m(ϕ), q, ϕ, a] = µ2, one finds that µ2 identifies with S/4π ≡ M2

irr as given in (III.3). Since, moreover, the
parameter q must be identified to the graviphoton charge Q, the solution F [m(ϕ), Q, ϕ, a] = S/4π implicitely gives
m(ϕ) in terms of Q, S, and ϕ. In the illustrative example a = 1 where m(ϕ) is given in (II.7), this yields:

µ2 =
S

4π
so that m(ϕ) =

√
S

4π
+Q2

e2ϕ

2
. (III.7)
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Note that when r− = 0 (∀a) the black hole solution is Schwarzschild’s so that m(ϕ) is reduced, as it should, to

its (constant) mass m =
√
S/4π = r+/2. The same is true in the Reissner-Nordström limit, a = 0, for which

m = (r+ + r−)/2, see (II.5). On the other hand, when a non-trivial scalar field is present, the phenomenological,
“Eardley-inspired”, scalar-field-sensitive mass function m(ϕ) for black holes which was shown in [1] to satisfy (II.6) is
in fact explained and justified by their thermodynamics, and the parameters q and µ become related to their global
electric charge and entropy.

IV. CONCLUSION

The results above indicate that the conservative dynamics of a (hairy) black hole when skeletonized “à la” Eardley,
as in (II.4), is generically such that it does not exchange energy (nor electric charge) with its environment. Therefore,
because of the first law of thermodynamics, the black hole adiabatically readjusts its equilibrium configuration in
such a way that its entropy (or area in the case at hand) remains constant. We conjecture that this fact holds in
any scalar-vector-tensor theory of gravity and that the parameters entering the scalar-field-sensitive “mass” functions
attributed to skeletonized black holes can always be related to their global gauge charges and their Wald entropy [19],
which remain constant in their motion around their companion.
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