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I. INTRODUCTION

It is well-known from semiclassical analyses that nonextremal, asymptotically flat black holes are thermally
unstable due to decay under Hawking radiation, leading to their specific heat being negative [1]. This
interesting fact has motivated the study of thermal stability of black holes, from a perspective that is
inspired by a definite proposal for quantum spacetime (like Loop Quantum Gravity (LQG), [2, 3]) rather
than on semiclassical assumptions. A consistent understanding of the issue of quantum black hole entropy
has been obtained through LQG [4, 7], where not only has the Bekenstein-Hawking area law been retrieved
for macroscopic (astrophysical) black holes, but a whole slew of corrections to it, due to quantum spacetime
fluctuations have been derived as well [5]-[15], with the leading correction being logarithmic in area with
the coefficient −3/2. However, we hasten to add the general disclaimer that our paper is neither on LQG,
nor does it use the LQG framework in an essential way ! LQG, if anything, plays only a motivational role
in our work. Many of the assumptions of the paper, actually made independently of LQG, are justified
on the ground that LQG might provide situations where these assumptions are valid. Of course, these are
assumptions nevertheless. It would be most gratifying if these assumptions could be justified as results
derived from LQG. But this is beyond our ability at this point.

The implications of this quantum perspective, on the thermal stability of black holes from decay due to
Hawking radiation, have therefore been an important aspect of black hole thermodynamics beyond semi-
classical analysis, and also somewhat beyond the strictly equilibrium configurations that Isolated Horizons
represent. Classically a black hole in general relativity is characterized by its’ mass (M), charge (Q) and
angular momentum (J). Intuitively, therefore, we expect that thermal behaviour of black holes will depend
on all of these parameters. For a given classical metric characterizing a black hole, the mass can be derived
explicitly to be a function of the charge and angular momentum. However, the quantum spacetime perspec-
tive frees us from having to use classical formulae for this functional dependence of the mass. Instead, the
assumption is simply this : the mass is a monotonically increasing function of the horizon area, alongwith
the charge and angular momentum.

The simplest case of vanishing charge and angular momentum has been investigated longer than a decade
ago [16] - [18]. This has been generalized, via the idea of thermal holography [19], [20], and the saddle point
approximation to evaluate the canonical partition function corresponding to the horizon, retaining Gaussian
thermal fluctuations. The consequence is a general criterion of thermal stability as an inequality connecting
area derivatives of the mass and the microcanonical entropy. This inequality is nontrivial only when the
microcanonical entropy has corrections (of a particular algebraic sign) beyond the area law, as is the case
for the loop quantum gravity calculation of the microcanonical entropy [6].

This body of work has been generalized a few years ago [21] to include black holes with charge, and more
recently, to radiant horizons which are both charged and rotating [29]-[30]. The complex set of stability
criteria now decisively predict the thermal stability or otherwise, of any radiant black hole, when its mass-
area relation extracted from its classical metric is used as input. The inclusion of rotation poses challenges in
the LQG formulation [13], [9] - [11] of isolated horizons. However, the general understanding of non-radiant
rotating isolated horizons has parallels in these assays. We do not review this body of work, but realize that
the thermal stability behaviour of rotating radiant black holes may be qualitatively different from that of the
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non-rotating ones. Further, while investigating several types of black holes in diverse spacetime dimensions,
considered as examples where the ensuing thermal stability criteria are applicable, the inclusion of rotation
does throw up surprises : the existence of small but nontrivial windows in parameter space, where some black
holes, considered unstable generically, appear to satisfy most of our criteria of thermal stability. However,
one important thermal stability criterion is still violated, and in this respect, the standard wisdom regarding
thermal instability of asymptotically flat black holes, appears to still hold. However, what has not been
anticipated in earlier work is the existence of such narrow windows of ‘quasi’-stability of asymptotically flat
black holes.

II. THERMAL HOLOGRAPHY

In this section, we present a generalization of the thermal holography for non-rotating electrically charged
quantum radiant horizons discussed in [21], to the situation when the horizon has both charge and angular
momentum. Such a generalization completes the task set out in [16] and [19] to include charge and angular
momentum in consideration of thermal stability of the horizon under Hawking radiation.

The Hilbert space of a generic quantum spacetime is given as, H = Hb⊗Hv , where b(v) denotes the
boundary (bulk) space. A generic quantum state is thus given as

|Ψ〉 =
∑
b,v

Cb,v|χb〉⊗|ψv〉 (1)

Now, the full Hamiltonian operator (Ĥ), operating on H is given by

Ĥ|Ψ〉 = (Ĥb⊗Iv + Ib⊗Ĥv)|Ψ〉 (2)

where, respectively, Ib(Iv) are identity operators on Hb(Hv) and Ĥb(Ĥv) are the Hamiltonian operators on
Hb(Hv).

The first class constraints are realized on Hilbert space as annihilation constraints on physical states. The
bulk Hamiltonian operator thus annihilates bulk physical states

Ĥv|ψv〉 = 0 (3)

The bulk quantum spacetime is assumed to be free of electric charge and angular momentum, so that eqn.
(3) is augmented by the relation

[Ĥv − ΦQ̂v − ΩĴv]|ψv〉 = 0 . (4)

This assumption gleans from the idea that the generic quantum bulk Hilbert space is invariant under local
U(1) gauge transformations and local spacetime rotations (the latter, as part of local Lorentz invariance).
Inertial frame dragging certainly does not detract from such invariances.

We now consider, heuristically, a grand canonical ensemble of quantum spacetimes with horizons as bound-
aries, in contact with a heat bath, at some (inverse) temperature β. The Grand Partition Function is given
by

ZG = Tr(exp(−βĤ + βΦQ̂+ βΩĴ)) (5)

where the trace is taken over all states. This definition, together with eqn.s (1) and (4), yields

ZG =
∑
b,v

|Cb,v|2〈ψv|ψv〉〈χb|exp(−βĤ + βΦQ̂+ βΩĴ)|χb〉

=
∑
b

|Cb|2〈χb|exp(−βĤ + βΦQ̂+ βΩĴ)|χb〉 , (6)

assuming that the bulk states are normalized. The partition function thus turns out to be completely
determined by the boundary states (ZGb), i.e.,

Z = ZGb = Trb exp(−βĤ + βΦQ̂+ βΩĴ)

=
∑
k,l,m

g(k, l,m) exp(−β(E(Ak, Ql, Jm)− ΦQl − ΩJm)) , (7)
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where g(k, l,m) is the degeneracy corresponding to energy E(Ak, Ql, Jm) and k, l,m are the quantum num-
bers corresponding to eigenvalues of area, charge and angular momentum respectively. These quantum
numbers are all taken to be discrete [12]. Here, the spectrum of the boundary Hamiltonian operator is
assumed to be a function of area, charge and angular momentum of the boundary, considered here to be the
horizon. Following [8]-[12], it is further assumed that these ‘quantum hairs’ all have a discrete spectrum, in
parallel with the LQG results. We cannot prove these assumptions at this point, but explore their conse-
quences here. In the Macroscopic area limit (Ah >> l2P ) of quantum isolated horizons , they all have large
eigenvalues i.e. (k, l,m >> 1), so that, application of the Poisson resummation formula [16] gives

ZG =

∫
dx dy dz g(A(x), Q(y), J(z)) exp(−β(E(A(x), Q(y), J(z))− ΦQ(y)− ΩJ(z))) (8)

where x, y, z are respectively the continuum limit of k, l,m respectively.
We now assume that the macroscopic spectra of the area, charge and angular momentum are linear in

their arguments, so that a change of variables gives, with constant Jacobian, the result

ZG =

∫
dAdQdJ exp[S(A)− β(E(A,Q, J)− ΦQ− ΩJ)] , (9)

where, following [22], the microcanonical entropy of the horizon is defined by expS(A) ≡ g(A(x),Q(y),J(z))
dA
dx

dQ
dy

dJ
dz

.

III. STABILITY CRITERIA

Using the saddle point approximation to evaluate eqn (9), we obtain the thermal stability criteria that
govern most radiant black holes

H =

 βMAA(Ā, Q̄, J̄)− SAA(Ā) βMAQ(Ā, Q̄, J̄) βMAJ(Ā, Q̄, J̄)
βMAQ(Ā, Q̄, J̄) βMQQ(Ā, Q̄, J̄) βMJQ(Ā, Q̄, J̄)
βMAJ(Ā, Q̄, J̄) βMJQ(Ā, Q̄, J̄) βMJJ(Ā, Q̄, J̄)

 (10)

The necessary and sufficient conditions for a real symmetric square matrix to be positive definite are :
’determinants all principal square submatrices, and the determinant of the full matrix, are positive.’[23] This
condition leads to the following ‘stability criteria’ :

βMAA(Ā, Q̄, J̄)− SAA(Ā) > 0 (11)

βMQQ(Ā, Q̄, J̄) > 0 (12)

βMJJ(Ā, Q̄, J̄) > 0 (13)

MQQ(Ā, Q̄, J̄)MJJ(Ā, Q̄, J̄) − (MJQ(Ā, Q̄, J̄))2 > 0 (14)

MJJ(Ā, Q̄, J̄)(βMAA(Ā, Q̄, J̄)− SAA(Ā)) − β(MAJ(Ā, Q̄, J̄))2 > 0 (15)

MQQ(Ā, Q̄, J̄)(βMAA(Ā, Q̄, J̄)− SAA(Ā)) − β(MAQ(Ā, Q̄, J̄))2 > 0 (16)

[(βMAA(Ā, Q̄, J̄)− SAA(Ā))(MQQ(Ā, Q̄, J̄)MJJ(Ā, Q̄, J̄)− (MJQ(Ā, Q̄, J̄))2)

−βMAQ(Ā, Q̄, J̄)(MAQ(Ā, Q̄, J̄)MJJ(Ā, Q̄, J̄)−MJQ(Ā, Q̄, J̄)MAJ(Ā, Q̄, J̄))

+ βMAJ(Ā, Q̄, J̄)(MAQ(Ā, Q̄, J̄)MJQ(Ā, Q̄, J̄)−MQQ(Ā, Q̄, J̄)MAJ(Ā, Q̄, J̄))] > 0 (17)

Of course, (inverse) temperature β is assumed to be positive for a stable configuration. This makes the
inequalities 12, 13 simpler i.e. MQQ(Ā, Q̄, J̄) > 0,MJJ(Ā, Q̄, J̄) > 0.

Now, the temperature is defined as T ≡ 1
β ; eqn. (11) implies that T = MA

SA
. Eqn.s (18) and (19) together

yield SA = 1
4AP
− 3

2A and is positive for macroscopic black holes as A >> AP . So, positivity of MA implies

the positivity of β for macroscopic black holes. The relation T = MA

SA
implies dT

dA = MA

(SA)2 (βMAA − SAA).

So, what is new is the requirement that this temperature must increase with horizon area, inherent in the
positivity of the quantity (βMAA−SAA) which appears in several of the stability criteria. If this is violated,
as for example in case of the standard Schwarzschild black hole (reference), thermal instability is inevitable.

The convexity property of the entropy follows from the condition of convergence of partition function
under gaussian fluctuations [16], [22], [25]. The thermal stability is related to the convexity property of
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entropy. Hence, the above conditions are correctly the conditions for thermal stability. For chargeless,
non-rotating horizons, eqn. (11) reproduces the thermal stability criterion and condition of positive specific
heat(i.e.variation of black hole mass with temperature) given in [19], as expected. Actually for a chargeless,
non-rotating black hole, both the mass and the temperature are functions only of the horizon area A. From

these one can define the specific heat as C = dM
dT = (SA)2

(βMAA−SAA) .

For charged, non-rotating black holes, eqn.s (11), (12) and (16) describe the stability, in perfect agreement
with [21], while (11), (13) and (15) describe the thermal stability criteria for uncharged rotating radiant
horizons. The new feature for black holes with both charge and angular momentum is that not only does
the specific heat has to be positive for stability, but the charge and the angular momentum play important
roles as well.

As claimed in the Introduction, the thermal stability criteria above are derived by the application of
standard statistical mechanical formalism to a quantum horizon characterized by various observables having
discrete eigenvalue spectra. Thus, no aspect of classical geometry enters the derivation of these criteria.
Given the classical metrics specifying various classical black hole spacetimes, the mass can be obtained as an
explicit function of the area, charge and angular momentum of the horizon. It is then possible, on the basis
of our stability criteria, to predict which classical black holes will radiate away to extinction, and which ones
might find some stability, and for what range of parameters. This is what is attempted in the next section.

IV. PREDICTING THERMAL STABILITY AND QUASI-STABILITY

Notice that in the stability criteria derived in the last section, first and second order derivatives of the
microcanonical entropy of the horizon at equilibrium play a crucial role, in making some of the criteria non-
trivial. Thus, corrections to the microcanonical entropy beyond the Bekenstein-Hawking area law, arising
due to quantum spacetime fluctuations might play a role of some significance. It has been shown that [6]
the microcanonical entropy for macroscopic isolated horizons has the form

S = SBH −
3

2
logSBH +O(S−1BH) (18)

SBH =
Ah

4AP
, AP ≡ Planck area . (19)

A. Kerr-Newman Black Hole

The Kerr-Newman metric of asymptotically flat Black Hole is given in Boyer-Lindquist coordinates as

ds2 = −Ξ

Σ
(dt− asin2θ dφ)2 +

sin2θ

Σ
((r2 + a2)dφ− adt)2 +

Σ

Ξ
dr2 + Σdθ2 (20)

where, Ξ = r2 − 2M r + a2 + Q2, Σ = r2 + a2 cos2θ, a = J
M The generalized Smarr formula for the

Kerr-Newman Black Hole is given as [26]

M2 =
A

16π
+
π

A
(4J2 +Q4) +

Q2

2
(21)

We now define the inverse Hawking temperature β ≡ (SA/MA) and logarithmic rate of change of the tem-
perature with horizon area ∆ ≡ (SA/MA)MAA−SAA, both quantities being defined at thermal equilibrium.
We obtain

β > 0 for A2 > 16π2(4J2 +Q4)

∆ > 0 for 96π2(4J2 +Q4) > A2 > 16π2(4J2 +Q4) (22)

The second inequality in (22) is unexpected, since most earlier analyses had implied that there is no such
window of (quasi)-stability for asymptotically flat black hole spacetimes, as, for instance. ∆ < 0 for the
standard Schwarzschild solution. The issue though is that whether such a window applies vis-a-vis the other
stability criteria.
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We find that, for the Kerr-Newman spacetime,

mj ≡ ∆MJJ − β(MAJ)2

∝
8π3

(
−16J4 + 8J2Q4 + 3Q8

)
A5

+
16π2Q6

A4
+
−4J2π + 3πQ4

A3
− 1

32πA

=
8π3(4J2 +Q4)(3Q4 − 4J2)

A5
+

16π2Q6

A4
+
−4J2π + 3πQ4

A3
− 1

32πA
. (23)

The proportionality constant is of course a positive quantity. It is clear that if 3Q4 > 4J2 by a sufficient
margin, then it is possible to make the entire mj > 0 where A2 lies within the range given by (22). E.g., if
Q4 = 4J2, then mj > 0 for A2 < 64π2Q4 which lies within the range (22).

Similarly,

mq ≡ ∆MQQ − β(MAQ)2

∝
4π3Q2

(
4J2 +Q4

) (
36J2 +Q4

)
A5

+
π2
(
48J4 + 88J2Q4 + 3Q8

)
A4

+
πQ2

(
36J2 +Q4

)
2A3

+
3J2

2 −
Q4

8

A2
− 3Q2

64πA
− 1

256π2
. (24)

A similar argument for mq, as for mj , shows that mq > 0 within the range (22), provided, q4 < 12j2.
This is also true for the inequality

mjq ≡MQQMJJ − (MQJ)2 (25)

as a simple calculation quickly reveals. It follows that the ‘quasi-stability’ window is indeed valid for eqn.s
(11)=(16); the question is : does it hold for the determinant of the full Hessian matrix, i.e., criterion (17) ?
We find that this determinant is

HKN ∝
4π3Q2

(
−48J4 − 8J2Q4 +Q8

)
A5

−
π2
(
16J4 + 24J2Q4 − 3Q8

)
A4

+
πQ2

(
−12J2 +Q4

)
2A3

−
(
4J2 +Q4

)
8A2

− 3Q2

64πA
− 1

256π2
(26)

A close examination reveals that HKN cannot be positive in the region (22) ! This implies that the window
of ‘quasi’-stability (22) cannot be promoted to a full-fledged window of stability, even though all but one of
the stability criteria are fulfilled within this window of parameter space. The actual reason as to why this
happens is not clear to us at this moment. Be that as it may, the final conclusion tallies with the general
wisdom that asymptotically flat black holes tend to be thermally unstable.

V. SUMMARY AND DISCUSSION

The most important phyical upshot in our stability analysis, with the inclusion of rotation, is the existence
of windows in parameter space of black holes where most of the thermal stability criteria are apparently
satisfied, for asymptotically flat spacetimes, even though the Hessian determinant condition of thermal sta-
bility is violated. This is somewhat unexpected, as it departs from the wisdom of conventional semiclassical
thermodynamic analyses of specific black holes [24]. Such windows of ‘quasi’-stability in largely unstable
black hole spacetimes have connotations for Hawking radiation which warrant further analyses. Clearly,
inclusion of rotation and charge appear to add a degree of stability against Hawking decay of black holes,
but apparently not enough to render them completely stable.

We reiterate that our analysis of stability citeria is quite independent of specific classical spacetime ge-
ometries, relying as it does on quantum aspects of spacetime. The construction of the partition function
used standard formulations of equilibrium statistical mechanics augmented by results from canonical Quan-
tum Gravity, with extra inputs regarding the behaviour of the microcanonical entropy as a function of area
beyond the Bekenstein-Hawking area law, as for instance derived from Loop Quantum Gravity [6]. However,
we emphasize that the results are more general than being restricted to any specific proposal for quantum
spacetime geometry, requiring only certain functional dependences on horizon area and other parameters of
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statistical mechanical quantities like entropy. It also stands to reason that our stability criteria are useful
for predicting the thermal behaviour vis-a-vis Hawking radiation for specific astrophysical black holes. In
particular, our criteria precisely predict regions of the parameter space of specific black hole solutions, not
only in general relativity, but also of extensions inspired from warped geometries and string theories, where
these solutions are stable under Hawking radiation.

It is also noteworthy that the approach is useful for making predictions on the thermal stability of black
holes in Lorentzian spacetimes with arbitrary number of spatial dimensions. It can also be generalized to
black holes with arbitrary ‘hairs’ (charges) - either quantum or classical [30].

There are however, subtleties of a statistical mechanical nature which have not been addressed in this
paper. The most important of these is the nature of the thermal instability discerned by us. While there are
indications that the instability in most cases can be associated with some sort of phase transition [19], the
very general approach here has not yet been applied to discuss the full range of thermal behaviour exhibited
specifically for AdS Schwarzschild black holes, for instance, as discussed in detail in [24]. Crucially, there
are ‘phases’ discussed in that paper which have not been fully explored via our more ‘quantum geometry’
approach, as distinct from the semiclassical approach employed in [24]. We hope to return to these important
issues in a future publication.

Acknowledgement: We would like to thank A Majhi for illuminating discussions. AKS would like to
thank CSIR for financial support.

[1] P. C. W. Davis, Proc. Roy. Soc. A353 (1977) 499.
[2] C. Rovelli, Quantum Gravity, Cambridge Monographs On Mathematical Physics (2004)
[3] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Monographs On Mathematical Physics

(2007)
[4] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Phys. Rev. Lett. 80 (1998) 904; e-Print ArXiv : gr-qc/9710007
[5] R. K. Kaul and P. Majumdar, Phys. Lett. B439 (1998) 267; e-Print ArXiv : gr-qc/ 9801080
[6] R. K. Kaul and P. Majumdar, Phys. Rev. Lett 84 (2000) 5255; e-Print ArXiv : gr-qc/ 0002040
[7] A. Ashtekar, J. Baez and K. Krasnov, Adv. Theor. Math. Phys. 4 (2000) 1; e-Print ArXiv : gr-qc/ 0005126
[8] A. Ashtekar, C. Beetle and J. Lewandowski, Phys. Rev. D64 (2001) 044016 , e-print arXiv:gr-qc/0103026
[9] R. K. Kaul and S. Kalyana Rama , Phys. Rev. D 68, 024001 , e-Print Arxiv: gr-qc/0301128v1

[10] E. Frodden, A. Perez, D. Pranzetti and C. Roken, Gen Relativ Gravit (2014) 46: 1828, e-Print Arxiv: 1212.5166
[11] J. B. Achour, K. Noui, and A. Perez, JHEP 1608 (2016) 149 , e-Print Arxiv: 1607.02380
[12] A. Majhi and P. Majumdar, Class. Quant. Grav. 31 (2014) 195003; e-Print ArXiv : 1301.4553.
[13] A. Ashtekar and B. Krishnan, Living Rev. Rel., 7 (2004) 10; e-Print ArXiv : gr-qc/ 0407042
[14] R. K. Kaul and P. Majumdar, Phys.Rev., D83 (2011) 024038; e-Print ArXiv : 1004.5487
[15] R. Basu, R. K. Kaul and P. Majumdar, Phys. Rev. D82 (2010) 024007; e-Print ArXiv : 0907.0846v3
[16] A. Chatterjee and P. Majumdar, Phys. Rev. Lett. 92 (2004) 141031; e-Print ArXiv : gr-qc/ 0309026
[17] A. Chatterjee and P. Majumdar, Phys. Rev. D71 (2005) 024003; e-Print ArXiv : gr-qc/ 0409097
[18] A. Chatterjee and P. Majumdar, Phys. Rev. D72 (2005) 044005; e-Print ArXiv : gr-qc/ 0504064
[19] P. Majumdar, Class. Quant. Grav. 24 (2007) 1747; e-Print ArXiv : gr-qc/ 0701014
[20] P. Majumdar, Int. Jou. Mod. Phys. A24 (2009) 3414; e-Print ArXiv :0903.5080
[21] A. Majhi and P. Majumdar, Class. Quant. Grav. 29 (2012) 135013; e-Print arXiv : 1108.4670
[22] L. D. Landau and E. M. Lifschitz, Statistical Physics, Pergamon Press, 1980
[23] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics;

Har/Cdr edition (1 June 2000); R. Bhatia, Positive Definite Matrices, Princeton University Press, ISBN:
9780691168258; A. Pinkus, Totally Positive Matrices, Cambridge University Press, 2009.

[24] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87(1983) 577-588
[25] R. Monteiro, hep-th arXiv:1006.5358
[26] M. M. Caldarelli , G. Cognola and D. Klemm, Class. Quant. Grav. 17 (2000) 399-420; e-Print arXiv:hep-

th/9908022
[27] A. Sen, Phys. Rev. Lett. 69 (1992) 1006-1009; e-Print arXiv : hep-th/9204046
[28] J. H. Horne and G. T. Horowitz, Phys. Rev. D46 (1992) 1340-1346; e-Print arXiv : hep-th/9203083
[29] A. K. Sinha and P. Majumdar, Mod. Phys. Lett. A32 (2017) no.37, 1750208; e-print arXiv: 1512.04181.
[30] A. K. Sinha, Mod. Phys. Lett. A06 (2018) no.05, 1850031.

6


	Introduction
	Thermal holography
	Stability Criteria
	Predicting Thermal Stability of Classical Black Holes
	Kerr-Newman Black Hole

	Summary and Discussion
	References

