Homogeneous AdS Black Strings and Black p-branes in Einstein gravity and pure
Lovelock-Maxwell theory

In this work we introduce a new set of solutions of General Relativity with a negative cosmological
constant, that describe black strings and black p-branes. The solutions are supported by p minimally
coupled, free scalars, that have a linear dependence on the Cartesian coordinates along the extended
flat directions, having therefore a finite energy density. This scalar field provide a momentum
dissipation phenomena that allows to describe holographic dual with finite conductivities. We

extend our result to pure Lovelock-Maxwell theory.

Introduction. — It has been well established by now
that general relativity in spacetime dimensions greater
than four admits black object solutions with event hori-
zons of different topologies [1]; the archetypical example
being the black ring [2] [3]. The black ring is a Ricci flat
black hole whose event horizon has topology S? x S*,
in contrast to the S topology of the Myers-Perry gen-
eralization of Kerr geometry [4]. The existence of such
solutions shows how, in five or higher dimensions, the
theory circumvents topological obstructions that in four
dimensions it encountered for admitting hairy solutions
in asymptotically flat space [5].

For large angular momentum, the black ring solution
can be described by a black string geometry, which can
be thought of adding an unwrapped flat direction to the
four-dimensional Schwarzschild solution. By warping the
four-dimensional Schwarzschild-AdS solution and adding
an extra dimension to it, one can easily construct analytic
black strings in AdS space. The warping factor, however,
makes the AdS black string to be non-uniform, and this
introduces difficulties relative to the asymptotically flat
case, specially in relation to the study of its dynamical
stability as well as a proper definition of energy density.
Relying on numerical tools, homogenous black strings in
AdS can be constructed in pure GR with a negative cos-
mological constant [6], [7] as well as in five dimensional
gauged supergravity [8]. In this paper, we prove that
general relativity with negative cosmological constant,
apart from admitting such warped-AdS and numerical
black string solutions, also admits analytic solutions that
describe homogeneous black strings and black p-branes.
These solutions are supported by minimally coupled, free
scalar fields and exist in arbitrary dimension D greater
than 4.

New black strings in AdS. — Consider Einstein the-
ory in dimension D = d + p, coupled to p scalar fields
™ with i = 1,2, ..., p. The field equations are given by
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Here, G4p is the Einstein tensor. Hereafter, we will set
k= 16mG = 1.
The theory defined above admits the following solution
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with z° (i = 1,...,p) being Cartesian coordinates. These
are the coordinates along the flat p—brane. Remarkably,
the solution for the fields takes the simple form

P =zt (6)

with
4A
(d+p-2)

That is, the scalar fields have a linear dependence with
the coordinates z*. In —, [ appears as an arbitrary
integration constant, and v = 41,0 is the curvature of
an Euclidean manifold of constant curvature of dimension
d — 2 and line element dQ?. Note that @ forces the bare
cosmological constant A to take a negative value.

The solution presented above is the first of its type
of having been found analytically; namely, it is the first
homogeneous, analytic black p-brane solution of Einstein
equations with non-vanishing cosmological constant.

Spacetime is asymptotically AdS,; x RP, with the
curvature radius of the AdSy factor given by
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Notice that this value for the dressed AdS, curvature
radius [, obtained from 7 differs from the bared value of
the maximally symmetric AdSp solution of the theory,
Ig2 = —2A/[(D —1) (D —2)]. In general, | < Iy, with
the upper bound corresponding to p = 0.

We can choose v = %1, 0, which leads to three possible
local geometries for the asymptotic boundary. That is to
say, the holographic dual field theory can in principle be
formulated either on RP~! for v = 0, R x S%~1 x RP for
v=1,0or R x H¥1 x RP for k = —1.

N=- (7)




General Construction. — Let us now consider a gen-
eral D-dimensional metric of the form

dsy, = d&5 + 6;;dx"dx? | 9)

and the set of scalar fields ¥ = Az?, where we have
split the indices in such a way that Greek indices and
tilded objects live on the manifold with line element ds,
while lowercase Latin indices run along the p extended
directions.

Einstein equations projected along the manifold d3
and the extended directions z?, respectively reduce to

- %
Gp,u + (A + p4> guu =0, (10)
and
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The compatibility of the trace of —obtained by
contracting such equation with g*¥— with equation
implies that the constant A must be fixed as in . In
other terms, the configuration of the scalar fields induces
a shift in the cosmological constant of any d-dimensional
Einstein manifold. Therefore, on the transverse section
of the p-brane we can consider any solution to Einstein
equation in d dimensions, provided is obeyed. We
can, for example, consider the asymptotically AdS ro-
tating solution of general relativity with negative cos-
mological constants, which is characterized by its mass
as well as [432] angular momenta [9-I], to construct
black strings in AdSy x RP, with a rotating black hole on
the brane. It is important to stress that these compat-
ibility relations cannot be satisfied in general relativity
when electric charges are included.

Charged homogeneous black strings in AdS. — In or-
der to extend our solutions to include electric charge we
follow what has been recently found in [12]. In [12] it
has been shown how to construct analytic black string
solution in the presence of p-forms using higher curva-
ture gravity theories. In here we extend those results
to construct homogeneous AdS black strings and black
p-branes. Let us considere the following theory

7= / V=gdPz [L“ +2A — ;Falua,,ml-ﬂp (12)
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where £™ is the term of order n in the Lovelock series
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Fai..ap is the field strength of a (p — 1) — form and 1
are ¢ minimally coupled free scalar fields that depends

only on the extended flat directions z,. We will show
that for the case of £? it is possible to construct AdS
charged black strings and black p-branes (according to
the number of extended flat directions) making use of
our linearly dependent scalar fields.

Further comments. — The black p-brane solutions
are supported by the scalar fields ¥(9, which are lin-
ear on the coordinates z’. Even though these fields di-
verge in the limit z° — +oo, they yield finite energy
density. That is, the divergence merely comes from the
non-compactness of the extended directions. In fact, the
tt component of the energy-momentum tensor for the col-
lection of () turns out to be independent of the coordi-
nates 2. Therefore, one can properly define the energy
density, as in the Ricci-flat, homogenous black strings.

Solution —@ exists due to the fact that, despite the
metric being homogenous, the scalar fields break trans-
lational symmetry. This idea has been used in many dif-
ferent contexts, for example in the construction of boson
stars and other gravitational solitons [I3] [14] as well as
for rotating hairy black holes [15].

Each of the scalars in the solution can be dualized to
(D — 1)-forms. Both the formulations in terms of scalars
and in terms of the (D — 1)-forms have resulted very use-
ful to construct asymptotically AdS, planar black holes
in the presence of other matter fields, which is of great
importance in the context of AdS/CFT correspondence
and, in particular, to its applications to condensed mat-
ter (see e.g. [16] 17]).

The entropy density is given by the area law, namely

7 47r7‘i_20 , (13)

where o is the unit volume of Q4_» , V' is the volume of
the extended directions and r is the largest root of the
equation 0 = F'(ry) := —gu. The temperature, T, can
be obtained as usual from the period of the Euclidean
time that yields a regular Euclidean section of the imag-
inary continuation ¢ — it. This yields,
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Since there is no charge associated to the free scalar
fields in this family of solutions, the mass M —or the
energy density m = M /V— can directly be obtained from
the first law of black hole mechanics; namely dm = T'ds.
Therefore,
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Before concluding, let us mention that black strings
suffer from Gregory-Laflamme (GL) instabilities [I8],
namely long-wavelength, perturbative instability trig-
gered by a mode travelling along the extended directions.



This kind of instability goes beyond the realm of gen-
eral relativity, and pervades also black string solutions
in other theories, like higher-curvature gravities [19-23].
Numerical simulations show that in five dimensions the
GL instability leads to the formation of a naked singular-
ity [24], 25], while thermodynamical arguments indicate
that for dimensions greater than 13 the final stage of the
instability could be an inhomogeneous black string [26].
The latter has been recently confirmed in the large D
limit [27]. It is likely that small (as compared with )
black strings will suffer from a GL instability. Whether
or not that is the case, is beyond the scope of the present
work and is matter of our current research. One might
nevertheless expect, in the context of the AdS/CFT du-
ality [28]-[29], that if the dual CFT has a well defined
evolution, the existence of an instability shouldn’t lead
to a naked singularity in the bulk as in the Ricci flat
case. For the case of our charged black strings solutions
we will show that in order to get homogenous AdS so-
lutions the inclusion of the scalar fields is fundamental,
and that they are provided by the following relation be-
tween the axion charge, the cosmological constant and
the number of extended flat directions

16A
2 g
A= 2(d+q)—8 (16)

where D = d + ¢ being ¢ the flat extended directions.
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