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We determine the binding energy, the total gravitational wave energy flux, and the grav-
itational wave modes for a binary of rapidly spinning black holes, working in linearized

gravity and at leading orders in the orbital velocity, but to all orders in the black holes’

spins. Though the spins are treated nonperturbatively, surprisingly, the binding energy
and the flux are given by simple analytical expressions which are finite (respectively

third- and fifth-order) polynomials in the spins. Our final results are restricted to the

important case of quasi-circular orbits with the black holes’ spins aligned with the orbital
angular momentum.
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1. Introduction

The general relativistic two-body problem, in particular the description of com-

pact binaries, as one of the most important sources of gravitational waves (GW)

detectable from Earth, poses a large challenge for analytical as well as numerical

calculations. Accurate waveform models are an essential ingredient for the detec-

tion of GW signals. The detections of such signals1 have demonstrated the success

of the approaches, but the need for more accurate and more general descriptions of

binary dynamics in general relativity (GR) persists and will grow with future more

sensitive GW detectors. Several (perturbative) analytic approaches to the two-body

problem in GR have been developed. Among others, the post-Newtonian (PN) ex-

pansion. It is an analytic approach for arbitrary mass ratio compact binaries in the

weak-field, slow-motion (characterized by εPN ∼ v2/c2 ∼ Gm/rc2) and small spin

regime (determined by the expansion parameter εspin ∼ Gmχ/rc2)a.

Previously, PN results for binary black holes (BBHs), in particular for the black

holes’ (BH) spins, were obtained order by order in the perturbative series, since for

BBHs: εPN ∼ εspin. However, by treating both expansion parameters separately,

we are able to derive compact analytic expressions for gauge invariant quantities

(GW energy flux, GW modes, conserved energy etc.) for a BBH at the leading PN

orders to all orders in the BHs’ spins – treating the spins nonperturbatively.

aWith cS/Gm2 = χ ∈ [0, 1), the dimensionless spin parameter.
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2. Effective Action

In a harmonic gauge framework, with a linearized metric perturbation hµν = gµν −
ηµν ∼ O(G), following the derivations in Ref. 2 and 3, we implement an effective

action of a two point-particle system with a spin-induced multipole structure (for

each particle) and respective multipole couplings to the gravitational field. In G =

c = 1 units, this effective description is split into particle- and spin-kinetic terms

Skin[TA], interaction terms Sint[h,TA] of the Ath black hole and a term, SG[h],

containing the gravitational field’s dynamics at linear order in hµν , so that

SBBH
eff [h,T1,T2] = SG[h] + {Skin[T1] + Sint[h,T1] + (1↔ 2)}.

All spin-induced multipoles of the black holes are coupling to the linear metric

perturbation hµν by (still containing nonlinear velocity contributions)

Sint[h,TA] =

∫
dt

{ ∞∑
`=0

mUµAU
ν
A

2γA `!
Re

[
i`aLA∂Lhµν + i`−1aρAενρ

αβaL−1
A ∂α∂L−1hβµ

]}
,

where aµA is the spin 4-vector, UµA the velocity 4-vector (parameterized by coordinate

time t) and γA the Lorentz factor of the Ath BH respectively. h encompasses the

gravitational degrees of freedom and T encodes the multipolar degrees of freedom

of the individual black holes. Note, we used the multi-index notation L := µ1 . . . µ`.

This interaction term arises from considering all possible combinations of the vac-

uum Riemann tensor, multipole moments and particle’s velocities at linear order in

the metric perturbation, under the restriction of reparameterization invariance and

invariance4.

3. Conservative dynamics

From the above action principle, the linearized field equations in the near zone of

the binary can be deduced (to linear order the velocities) and solved to all orders

in spin. A Fokker-type action with Lagrangian (including all spin-spin couplings in

this linearized framework with up to linear velocity contributions)

L =

[
−m1 +

m1

2
v2

1 +
1

2
S1(v1 × v̇1) + S1 · Ω̄1 + (1↔ 2)

]
+m1m2

∞∑
`=0

(−1)`

(2`)!

[
a2L

0 +
2viaj0εij

ka2L
0

(2`+ 1)

∂

∂rk

]
∂r−1

∂r2L
.

(1)

in the center-of-mass frame, is obtained. We introduced the BHs’ masses mA, 3-

velocities vA(t), spin 3-vectors aA = SA/mA and combination a0 = a1 + a2, as

well as the BHs’ separation vector r with r = |r| and the angular velocity vector

Ω̄A. The equations of motion for the BBH, in a quasi-circular limit and for spin

vectors aligned with the orbital angular momentum of the system, can be resummed

and solved for the angular frequency ω of the orbits in compact fashion. To linear

order in the metric perturbation hµν and velocities v (i.e., at leading PN order),
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but to all orders in the spins aA, the angular frequency is given by r̈ = −ω2r,

with ω2 = M/r[r − v(2a0 + σ∗)](r2 − a2
0)−3/2. Here we defined M = m1 +m2 and

σ∗ = |σ∗| = |m2a1 +m1a2|/M .

Gauge invariant quantities (e.g., Noether charges or the GW modes) are conve-

niently expanded in the commonly used expansion parameter x = (Mω)2/3, such

that εPN ∼ x and εspin ∼ xχ. In the following χ serves as book keeping parameter

for the order in spin considered (e.g., aA ∼ O(χ), a2
A ∼ O(χ2), . . . ). At each order

in χ, we consider the lowest order in x, i.e., the leading PN order at each order in

spin. Notice that this is different from the traditional PN order counting in 1/c2

(since we treated εspin and εPN as independent).

The conserved energy and total angular momentum of the two-body system

can be obtained as the associated Noether charges of (1). Recasting the angular

frequency ω in x yields, together with the respective Noether charges as functions of

r, the binding energy E(x) and total angular momentum J(x) = L(x)+m1a1+m2a2

perpendicular to the orbital plane of the BBH at the leading PN orders at all orders

in spin

E(x) = − µx

2

{
1 +

x3/2

3M
(7a0 + δa−)− x2a2

0

M2
− x7/2a2

0

M3
(a0 − δa−)

}
, and

L(x) = µx−1/2

{
M − 5

12
x3/2(7a0 + δa−) +

x2a2
0

M
+

3x7/2

4M2
a2

0(a0 − δa−)

}
.

Where the symmetric mass ratio ν = µ/M , the antisymmetric mass ratio δ =

(m1 − m2)/M , and a− being the projection of a− = a1 − a2 orthogonal to the

orbital plane.

Remarkably, the spin-expansions of the binding energy E and orbital angular

momentum L terminate after cubic-in-spin contributions. Note that this polynomial

structure in spin hinges on the use of x (or ω) as the variable in the conserved

quantities.

4. Radiative sector

The far zone dynamics, i.e., the gravitational effects at future null infinity, are

related with the near zone dynamics through a matching of the PN solution obtained

above and the far zone post-Minkowskian expansion5. The matching procedure

yields a relation between the source’ multipole moments and the emitted GW modes

and total GW energy flux at future null infinity. The GW polarization waveform

h+ − ih× =
∑
`,m −2Y`mh`m is projected onto a basis of spin weighted spherical

harmonics −sY`m. The GW modes h`m are explicitly given in eq. (84) of Ref. 3. The

spin expansion of the even-m modes terminates at a finite order. The odd-m modes

have contributions at all orders in spin, though they, are resumed in a compact

form, i.e., terms like
√
M2 + x2a2

0 appear. Expanding these term,
√
M2 + x2a2

0 =

M + x2a2
0/(2M) − x4a4

0/(8M
3) +O(x6χ6), yields the contributions at the leading

PN order at each order in spin.
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In an adiabatic approximation, at the leading PN orders at each order in the

BHs’ spin, we find the total GW energy flux

F =
µ2x5

M2

[
32

5
− 8x3/2

5M

{
8a0 + 3δa−

}
+

2x2

5M2

{
32a2

0 + a2
−

}
− 4x7/2

15M3

{
16a3

0 + 2a0a
2
− + 52δa2

0a− + δa3
−

}
+

2x4a2
0

5M4

{
16a2

0 + a2
−

}
+

2a2
0x

11/2

15M5

{
64a3

0 + a0a
2
− − 68δa2

0a− − 3δa3
−

}]
.

Again, the infinite sets of spin-induced multipolar interactions of the two BHs re-

markably cancel out at higher than quintic-in-spin contributions. Hence, the total

energy flux conveys full information about the spin effects at leading PN order in

the first five terms of the spin expansion.

5. Conclusion

We determined the binding energy, the gravitational wave modes and total energy

flux emitted by a spinning nonprecessing binary black hole in quasi-circular motion

at leading post-Newtonian orders at all orders in spin. Our results include contri-

butions of arbitrarily large PN order, counting in 1/c2. In particular, we obtained

for the first time the quartic-in-spin contributions to the 4PN waveform and total

energy flux, along with all higher-order-in-spin contributions at the corresponding

leading PN orders. Remarkably, the binding energy, the total energy flux, as well

as the even-in-m gravitational wave modes only contain a finite number of nonzero

contributions in their spin expansions at leading post-Newtonian order.

Conversely, the modes where all powers in spin appear are nevertheless rather

compact, which can be used to improve the resummation of modes, e.g., in the

synergetic EOB waveform model6. Though our results are only valid for aligned

spins, they can still be used to approximate waveforms from precessing binaries7.
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