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I outline a kinetic theory model of gravitational collapse due to a small perturbation.

This model produces a pattern of entropy destruction in a spherical core around the
perturbation, and entropy creation in a surrounding halo. Core–halo patterns are ubiq-

uitous in the astrophysics of gravitational collapse, and are found here without any of

the prior assumptions of such a pattern usually made in analytical models. Motivated
by this analysis, I outline a possible scheme for identifying structure formation via data

from observations or a simulation. This might aid exploration of hierarchical structure

formation, supplementing the usual density–based methods for highlighting astrophysical
and cosmological structure at various scales.
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1. Introduction and Motivation

Many astrophysical contexts see gravitational collapse leading to structure forma-

tion. A simple model of gravitational collapse can be constructed based on the

virial theorem, with an artificial division between a central core and surrounding

halo.1 Entropy rises within the halo, with at least a relative entropy decrease in

the shrinking core. If we further assume that the core’s density profile scales with

its radius R, then its phase space volume varies like R3/2 and it is easily seen that

there is an absolute fall in entropy within the core.

Note that there may, at least in principle, be two distinguishable entropy–related

effects: entropy transport from one volume element to another; and entropy cre-

ation/destruction. The distinction is somewhat arbitrary in the artificial virial the-

orem model just discussed. In kinetic theory treatments however, entropy creation

is separately identifiable, and arises only from collisional effects.

This note is based on a full account in Ref. 2. I outline how to construct a kinetic

theory model of gravitational collapse allowing analytical description of entropy

creation (Sec. 2). A core–halo pattern emerges as a result (Sec. 3). This suggests

an approach to identifying structure in simulations and observations (Sec. 4).

2. Outline of the Model

The model consists of a small central perturbation to an underlying uniform distri-

bution of self–gravitating particles. Via the well–known “Jeans swindle,” a system

with a finite number of particles N in a bounded volume can be used to model a

uniform arrangement of particles which is unbounded in extent, and so stable if

unperturbed.1

The perturbation evolves under truncated first order BBGKY equations for the

evolution of the distribution function (DF) and the correlation function. Write
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f0, f1 for the underlying and perturbation DFs, similarly g0, g1 for the correlation

functions, and set a1,2 to be N times the acceleration of a particle at 1 = (x1,v1)

due to a particle at 2 = (x2,v2). The full first order equation for the DF’s evolution

is3

∂f(1)

∂t
+v1 ·

∂f1(1)

∂x1
+

∫
a1,2 f1(2) d(2) · ∂f0(1)

∂v1
= − 1

N

∂

∂v1

∫
a1,2 g1(1, 2) d(2) , (1)

where the right–hand side gives the “collisional” effects of two–body interactions.

Both f0 and f1 are assumed to have initial Maxwellian velocity distributions,

with parameter σ, and a typical scale for the system is then given1 by the “Jeans

wave number,” kJ =
√

4πGmn/σ, where m is the (identical) mass of each particle,

n is the average number density, and G is Newton’s gravitational constant. The

model is valid for the beginning of gravitational collapse — the initial period during

which the perturbation remains small.

The entropy creation rate comes entirely from collisional effects, and its density

at x1 is (
∂Sx1

∂t

)
creation

=

∫
ln [f(1)]

∂

∂v1
·
∫

a1,2 g(1, 2) d(2) d3v1, (2)

where f = f0 + f1 and g = g0 + g1. It is useful to coarse grain the entropy, both

because it enables progress to be made with analytical calculations, and because

identification of structure typically implies focusing on only a range of scales.

The approach of Ref. 2 coarse grains by choosing a parameter β � 1, and then

in applying Eq. (2) considering only wave numbers k < βkJ. Furthermore, Ref. 2

focuses on only the “asymptotically dominant” part of the DF, correlation, and

entropy creation — the part that soon comes to grow fastest.

3. Result: a Core–Halo Pattern

I briefly describe the approach of Ref. 2 to calculating the resulting asymptotically–

dominant coarse–grained (acg) entropy creation rate, and in particular its depen-

dence on the distance r from the initial central perturbation. Let S◦
acg be the acg

entropy created within a sphere of radius r in the time t since the initial pertur-

bation was introduced. For large N, Eq. (1)’s collisional term is highly suppressed,

and, at leading order in 1/N, we can ignore it in calculating the contribution of

the DF to the first order correlation equation. The resulting equations can then be

solved to give, to leading order in 1/N , perturbation size ε, and β,

∂2S◦
acg

∂t ∂r
=

2k2J σ e3kJσt

9π2β

(
εN

nB

)2

Ŝ◦
acg(kJβr) , (3)

with B = 4π/(kJβ)
3

being the volume of a sphere associated with the coarse–

graining scale, and Ŝ◦
acg is a function shown in Fig. 1. Note that Eq. (3) shows the

entropy creation rate’s density on a shell of radius r around the central perturbation.
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Fig. 1. The entropy–creation pattern function S◦
acg, calculated by numerical integration of an

analytical expression. The error bars show integration error estimates. Adapted from fig. 2 of A

core–halo pattern of entropy creation in gravitational collapse, A. J. Wren, MNRAS, 477 (2018).

Entropy destruction occurs in a “core” around the central perturbation, with, at

leading order, equal2 and opposite entropy creation in a “halo” extending for a finite

radius beyond that core, as shown in Fig. 1. The physical scale for the core–halo

pattern depends on the coarse–graining parameter β: the coarser the graining, the

bigger the pattern’s physical scale. Entropy destruction (resp. creation) corresponds

to collisional relaxation (resp. “de–relaxation”) of the perturbation.

A core–halo pattern of gravitational collapse, well known from simulations and

observations, is generally set “by hand” in analytical models. As far as the author

has been able to determine, this is the first time an analytical kinetic theory model

has produced a core–halo pattern.

4. Structure Formation in Simulations and Observations

It is well known that the Universe has a multi–scale hierarchical structure, in which

core–halo patterns are ubiquitous. The identification of observed or simulated as-

trophysical structure typically involves considering features of especially high or

low densities, in physical space, or phase space. There is no unambiguous definition

of structure in this context, which can result in different methods giving different

results — for example, in identifying sub–haloes near the centre of dark matter

haloes,4 in major halo mergers,5 and in classifying elements of the cosmic web.6

This suggests that complementary methods for identifying structure, or structure

formation, may be helpful.

Given data from observations or a simulation, the above analysis suggests we

might construct a coarse–grained particle DF and correlation function, which then

could give the entropy creation rate from Eq. (2). The pattern of coarse–grained

entropy creation might then give a way to identify structure formation, presumably
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associated with volumes of relatively lower entropy creation.

A key step is extracting a correlation function from the data. There are various

methods for doing this.7 At least in the kinetic theory model of Sec. 2, the corre-

lation between two particles is small compared with their joint DF. In calculating

correlation functions from data, this would imply7 a need to identify the difference

between two quantities of relatively similar size.

This means that robust identification of entropy creation, and hence structure

formation, may need rather precise data. The outlook for data of sufficient precision

is perhaps encouraging with the development of ever more powerful computer simu-

lations, and the availability of detailed phase space observations from, for example,

Gaia.8
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