A new class of non-aligned Einstein-Maxwell solutions with a geodesic, shearfree and non-expanding multiple Debever-Penrose vector

Norbert Van den Bergh Department of Mathematical Analysis FEA16, Gent University, Gent, 9000, Belgium E-mail: norbert.vandenbergh@ugent.be

In a recent study of algebraically special Einstein-Maxwell fields¹ it was shown that, for non-zero cosmological constant, non-aligned solutions cannot have a geodesic and shearfree multiple Debever-Penrose vector \mathbf{k} . When $\Lambda = 0$ such solutions do exist and can be classified, after fixing the null-tetrad such that $\Psi_0 = \Psi_1 = \Phi_1 = 0$ and $\Phi_0 = 1$, according to whether the Newman-Penrose coefficient π is 0 or not. The family $\pi = 0$ contains the Griffiths solutions², with as sub-families the Cahen-Spelkens, Cahen-Leroy and Szekeres metrics. It was claimed in Ref. 2 (and repeated in Ref. 1) that for $\pi = 0$ both null-rays \mathbf{k} and $\boldsymbol{\ell}$ are necessarily non-twisting ($\bar{\rho} - \rho = \bar{\mu} - \mu = 0$): while it is certainly true that $\mu(\bar{\rho} - \rho) = 0$, the case $\mu = 0$ appears to have been overlooked. I reduce the sub-family in which \mathbf{k} is non-expanding ($\rho + \bar{\rho} = 0$) to an integrable system of pde's and I present an explicit family of solutions.

Keywords: MG15 Proceedings; non-aligned Einstein-Maxwell fields

1. Introduction

In the quest for exact solutions of the Einstein-Maxwell equations

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = F_{ac}F_{b}{}^{c} - \frac{1}{4}g_{ab}F_{cd}F^{cd},$$
(1)

a large amount of research has been devoted to the study of so called *aligned* Einstein-Maxwell fields, in which at least one of the principal null directions (PND's) of the electromagnetic field tensor \mathbf{F} is parallel to a PND of the Weyl tensor, a so called Debever-Penrose (DP) direction. One of the main properties in this respect is the Goldberg-Sachs theorem³, stating that, if a space-time admits a complex null tetrad $(\mathbf{k}, \ell, \mathbf{m}, \overline{\mathbf{m}})$ such that \mathbf{k} is shear-free and geodesic and $R_{ab}k^ak^b = R_{ab}k^am^b = R_{ab}m^am^b = 0$ (as is the case when \mathbf{k} is also a PND of \mathbf{F}), then the Weyl tensor is algebraically special, with \mathbf{k} being a multiple Weyl-PND. One of the topics considered in Ref. 1, dealing with the reverse problem, enquired after the existence of algebraically special (non-conformally flat and non-null) Einstein-Maxwell fields with a possible non-zero cosmological constant for which the multiple Weyl-PND \mathbf{k} is geodesic and shear-free ($\Psi_0 = \Psi_1 = \mathbf{\kappa} = \mathbf{\sigma} = 0$) and for which \mathbf{k} is *not* parallel to a PND of \mathbf{F} ($\Phi_0 \neq 0$). Choosing a null-rotation about \mathbf{k} such that $\Phi_1 = 0$, it follows that $\Phi_2 \neq 0$: with $\Phi_2 = 0 \ \ell$ would be geodesic and shear-free and the Goldberg-Sachs theorem would imply $\Psi_3 = \Psi_4 = 0$. The Petrov type would then be D, in which case^{4,5} the only null Einstein-Maxwell solutions are given by the (doubly aligned) Robinson-Trautman metrics.

1

2

Using the GHP formalism^a the Maxwell equations and Bianchi equations become then

$$\eth' \Phi_0 = -\pi \Phi_0, \tag{2}$$

$$b'\Phi_0 = -\mu\Phi_0, \tag{4}$$

$$0\Phi_2 = -v\Phi_0 + i\Phi_2, \tag{5}$$

$$\Phi \Phi_2 = -\lambda \Phi_0 + \rho \Phi_2, \tag{6}$$

$$d\Psi_2 = -\pi \Phi_0 \Phi_2 + 3\tau \Psi_2, \tag{7}$$

$$\Psi \Psi_2 = \mu |\Phi_0|^2 + 3\rho \Psi_2, \tag{8}$$

after which the commutators $[\eth', \eth], [\eth', \Rho], [\eth, \Rho'], [\eth', \Rho']$ and $[\Rho', \Rho]$ applied to Φ_0 give

$$\delta \pi = (3\rho - \overline{\rho})\mu - 2\Psi_2 + \frac{R}{12},$$
(9)

$$P\pi = 5\rho\pi, \tag{10}$$

$$\delta\mu = \overline{\lambda}\pi + 3\mu\tau \tag{11}$$

$$\partial \mu = \lambda \lambda + 3\mu t, \tag{11}$$

$$\Phi' \pi - \eth' \mu = 2\nu\rho - 2\lambda\tau - \pi\overline{\mu} - \mu\overline{\tau} - 2\Psi_3, \tag{12}$$

$$\mathbf{P}\mu = \pi(\overline{\pi} + 3\tau) + 2\Psi_2 - \frac{\kappa}{12}.$$
(13)

Herewith one of the GHP equations becomes a simple algebraic equation for Ψ_2 ,

$$\Psi_2 = \rho \mu - \tau \pi + \frac{R}{12},\tag{14}$$

the Þ derivative of which results in $\rho R = 0$.

As $\rho = 0$ would imply $\Phi_0 = 0$, this leads to the remarkable consequence that an algebraically special Einstein-Maxwell solution possessing a shear-free and geodesic multiple Weyl-PND which is not a PND of F necessarily has a vanishing cosmological constant. The corresponding class of solutions is non-empty, as it contains the Griffiths² metrics, encompassing as special cases the metrics of Ref. 7, 8, 9, 10.

In Ref. 2 it was claimed that for $\pi = 0$ both null-rays **k** and ℓ are necessarily nontwisting ($\bar{\rho} - \rho = \bar{\mu} - \mu = 0$). As a consequence it was also claimed in Ref. 1 that the Griffiths metrics are uniquely characterised by the condition $\pi = 0$. However, when $\pi = 0$ the only conclusion to be drawn from (10, 14) is that $\mu(\bar{\rho} - \rho) = 0$. When ρ is real this indeed leads to the metrics of Ref. 2, while the case $\mu = 0$ appears to have been overlooked and leads, as shown in the section below, to new classes of solutions.

^aThroughout I use the sign conventions and notations of Ref. 6 §7.4, with the tetrad basis vectors taken as $\mathbf{k}, \boldsymbol{\ell}, \boldsymbol{m}, \overline{\boldsymbol{m}}$ with $-k^a \ell_a = 1 = m^a \overline{m}_a$. In order to ease comparison with the (more familiar) Newman-Penrose formalism, I will write primed variables, such as κ', σ', ρ' and τ' , as their NP equivalents $-\nu, -\lambda, -\mu$ and $-\pi$.

3

2. The missing class

When $\pi = 0$ and $\mu = 0$ the equations from the previous paragraph immediately lead to $\Psi_0 = \Psi_1 = \Psi_2 = 0$ and $\Psi_3 = \rho \nu - \lambda \tau$. We try to make some progress by looking for solutions for which **k** is non-expanding ($\rho + \overline{\rho} = 0$). Acting on this condition with the \eth and P operators, the GHP equations lead to $\tau = 0$ and

$$\mathbf{0}^2 + |\Phi_0|^2 = 0,\tag{15}$$

the \eth derivative of which implies $\lambda = \Phi_2 \overline{\Phi_0} \rho^{-1}$. We translate these results into Newman-Penrose (NP) language and fix a boost and spatial rotation in the k, ℓ and m, \overline{m} planes such that $\Phi_0 = 1$ and $\rho = i$. It follows that the only non-0 spin coefficients are ρ, v and $\lambda = -i\Phi_2$, with the only non-vanishing components of the Weyl spinor being $\Psi_3 = iv$ and Ψ_4 . As $[D, \Delta] = 0$ coordinates u, v and $\zeta, \overline{\zeta}$ exist such that $D = \partial_u, \Delta = \partial_v$ and

$$\delta = e^{-iu}(\xi \partial_{\zeta} + \eta \partial_{\overline{\zeta}} + P \partial_u + Q \partial_v),$$

 ξ, η, P, Q being arbitrary functions. The e^{-iu} factor is included for convenience: applying the $[\delta, D]$ commutator to u, v and ζ shows that ξ, η, P, Q are functions of $v, \zeta, \overline{\zeta}$ only. Introducing new variables $n = e^{-iu}v$ and $\phi = e^{-2iu}\Phi_2$ it follows that also n and ϕ depend on $v, \zeta, \overline{\zeta}$ only, with the full set of Jacobi equations and field equations reducing to the following system of pde's:

$$P_{\nu} + i\overline{P}\phi - \overline{n} = 0, \tag{16}$$

$$Q_{\nu} + iQ\phi = 0, \tag{17}$$

$$\xi_{\nu} + i\overline{\eta}\phi = 0, \tag{18}$$

$$\eta_{\nu} + i\xi\overline{\phi} = 0, \tag{19}$$

$$e^{-iu}\overline{\delta}P - e^{iu}\delta\overline{P} - 2i|P|^2 = 0, \tag{20}$$

$$e^{-iu}\delta Q - e^{iu}\delta \overline{Q} - 2i(\Re Q\overline{P} - 1) = 0,$$
⁽²¹⁾

$$e^{-iu}\delta\xi - e^{iu}\delta\overline{\eta} - i(\xi P + \overline{\eta}P) = 0, \qquad (22)$$

(23)

$$e^{iu}\delta n = -iPn + 2|\phi|^2,\tag{24}$$

$$e^{iu}\delta\phi = -2iP\phi - n,\tag{25}$$

(26)

with the Ψ_4 component of the Weyl spinor given by $\Psi_4 = ie^{2iu}(\overline{nP} + \Delta\phi) + e^{iu}\overline{\delta}n$. This system is integrable and a simple solution is obtained by assuming $\phi = H^2$ to be a positive constant: in terms of new coordinates u, v, a, b the null tetrad is given by

$$\boldsymbol{\omega}^{1} = \frac{e^{iu}}{2H(a+b)} [e^{i\frac{\pi}{4}-v} da - e^{-i\frac{\pi}{4}+v} db], \qquad (27)$$

$$\boldsymbol{\omega}^{3} = \frac{1}{H^{2}} [\mathrm{d}v - \frac{1}{2(a+b)} \mathrm{d}(a-b)], \qquad (28)$$

$$\boldsymbol{\omega}^{4} = \mathrm{d}u - \frac{1}{2(a+b)} [e^{-2v} \mathrm{d}a - e^{2v} \mathrm{d}b].$$
⁽²⁹⁾

4

The corresponding space-time metric is

$$ds^{2} = \frac{1}{H^{2}} \left[-2dv + \frac{1}{a+b} d(a-b) \right] du + \frac{1}{H^{2}(a+b)} \left(e^{-2v} da - e^{2v} db \right) dv + \frac{\cosh 2v}{H^{2}(a+b)^{2}} da db.$$
(30)

and the Maxwell field and energy-momentum tensor are obtained as

$$\boldsymbol{F} = iH^2(\boldsymbol{\omega}^1 - \boldsymbol{\omega}^2) \wedge \boldsymbol{\omega}^3 + i(e^{-2iu}\boldsymbol{\omega}^1 - e^{2iu}\boldsymbol{\omega}^2)\boldsymbol{\omega}^4, \tag{31}$$

$$\boldsymbol{T} = 2H^2 (e^{-2iu} \boldsymbol{\omega}^{1^2} + e^{2iu} \boldsymbol{\omega}^{2^2} + H^2 \boldsymbol{\omega}^{3^2}) + 2\boldsymbol{\omega}^{4^2}.$$
 (32)

The Petrov type is III and the space-time admits three Killing vectors, ∂_u , $\partial_a - \partial_b$ and $a\partial_a + b\partial b$. At first sight it seems odd that the Weyl spinor components Ψ_3 and Ψ_4 depend on *u*, while the frame has been "invariantly" fixed. The explanation however is that the the frame was fixed by means of a null rotation putting $\Phi_0 = 1$, while the Maxwell field itself does not share the space-time symmetries: **F** is not Lie-propagated along the integral curves of the null Killing vector ∂_u (this also shows that the family of solutions presented here is distinct from the Einstein-Maxwell solutions admitting null-Killing vectors of Ref. 11.

Acknowledgment

All calculations were done using the Maple symbolic algebra system, while the properties of the metric (30) were checked with the aid of Maple's DifferentialGeometry package.

References

- 1. N. Van den Bergh, Gen. Rel. Grav., 49, 1, 2017
- 2. J. Griffiths, Gen. Rel. Grav., 18, 4, 1986
- 3. J.N. Goldberg, R.K. Sachs, Acta Phys. Pol. Suppl., 22, 13, 1962
- 4. R. Debever, N. Van den Bergh, J. Leroy, Class. Quantum Grav., 6, 1373, 1989
- 5. N. Van den Bergh, Class. Quantum Grav., 6, 1871, 1989
- 6. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, *Exact solutions* of *Einstein's field equations*, Cambridge University Press, 2003
- 7. M. Cahen, J. Leroy, J. Math. Mech., 16, 501, 1966
- 8. M. Cahen, J. Spelkens, Bull. Soc. Math. Belg., 53, 817, 1967
- 9. J.B. Griffiths, J. Phys. A, 16, 1175, 1983
- 10. P. Szekeres, J. Math. Phys., 7, 751, 1966
- 11. B. Lucács, Z. Perjés, Á. Sebestyén, J. Math. Phys., 22, 1248, 1981