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In a recent study of algebraically special Einstein-Maxwell fields 1 it was shown that, for non-zero
cosmological constant, non-aligned solutions cannot have a geodesic and shearfree multiple Debever-
Penrose vector kkk. When Λ = 0 such solutions do exist and can be classified, after fixing the null-tetrad
such that Ψ0 = Ψ1 = Φ1 = 0 and Φ0 = 1, according to whether the Newman-Penrose coefficient π is
0 or not. The family π = 0 contains the Griffiths solutions 2, with as sub-families the Cahen-Spelkens,
Cahen-Leroy and Szekeres metrics. It was claimed in Ref. 2 (and repeated in Ref. 1) that for π = 0
both null-rays kkk and ℓℓℓ are necessarily non-twisting (ρ̄ − ρ = µ̄ − µ = 0): while it is certainly true
that µ(ρ̄ −ρ) = 0, the case µ = 0 appears to have been overlooked. I reduce the sub-family in which
kkk is non-expanding (ρ + ρ̄ = 0) to an integrable system of pde’s and I present an explicit family of
solutions.
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1. Introduction

In the quest for exact solutions of the Einstein-Maxwell equations

Rab −
1
2

Rgab +Λgab = FacFb
c − 1

4
gabFcdFcd , (1)

a large amount of research has been devoted to the study of so called aligned Einstein-
Maxwell fields, in which at least one of the principal null directions (PND’s) of the electro-
magnetic field tensor FFF is parallel to a PND of the Weyl tensor, a so called Debever-Penrose
(DP) direction. One of the main properties in this respect is the Goldberg-Sachs theorem3,
stating that, if a space-time admits a complex null tetrad (kkk, ℓℓℓ,mmm,mmm) such that kkk is shear-free
and geodesic and Rabkakb = Rabkamb = Rabmamb = 0 (as is the case when kkk is also a PND
of FFF), then the Weyl tensor is algebraically special, with kkk being a multiple Weyl-PND.
One of the topics considered in Ref. 1, dealing with the reverse problem, enquired after the
existence of algebraically special (non-conformally flat and non-null) Einstein-Maxwell
fields with a possible non-zero cosmological constant for which the multiple Weyl-PND
kkk is geodesic and shear-free (Ψ0 = Ψ1 = κ = σ = 0) and for which kkk is not parallel to a
PND of FFF (Φ0 ̸= 0). Choosing a null-rotation about kkk such that Φ1 = 0, it follows that
Φ2 ̸= 0: with Φ2 = 0 ℓℓℓ would be geodesic and shear-free and the Goldberg-Sachs theorem
would imply Ψ3 =Ψ4 = 0. The Petrov type would then be D, in which case4,5 the only null
Einstein-Maxwell solutions are given by the (doubly aligned) Robinson-Trautman metrics.
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Using the GHP formalisma the Maxwell equations and Bianchi equations become then

ð′Φ0 = −πΦ0, (2)

ÞΦ0 = 0, (3)

Þ′Φ0 = −µΦ0, (4)

ðΦ2 = −νΦ0 + τΦ2, (5)

ÞΦ2 = −λΦ0 +ρΦ2, (6)

ðΨ2 = −πΦ0Φ2 +3τΨ2, (7)

ÞΨ2 = µ|Φ0|2 +3ρΨ2, (8)

after which the commutators [ð′, ð], [ð′, Þ], [ð, Þ′], [ð′, Þ′] and [Þ′, Þ] applied to Φ0 give

ðπ = (3ρ −ρ)µ −2Ψ2 +
R
12

, (9)

Þπ = 3ρπ, (10)

ðµ = λπ +3µτ , (11)

Þ′π −ð′µ = 2νρ −2λτ −πµ −µτ −2Ψ3, (12)

Þµ = π(π +3τ)+2Ψ2 −
R
12

. (13)

Herewith one of the GHP equations becomes a simple algebraic equation for Ψ2,

Ψ2 = ρµ − τπ +
R
12

, (14)

the Þ derivative of which results in ρR = 0.

As ρ = 0 would imply Φ0 = 0, this leads to the remarkable consequence that an alge-
braically special Einstein-Maxwell solution possessing a shear-free and geodesic multiple
Weyl-PND which is not a PND of FFF necessarily has a vanishing cosmological constant.
The corresponding class of solutions is non-empty, as it contains the Griffiths2 metrics,
encompassing as special cases the metrics of Ref. 7, 8, 9, 10.

In Ref. 2 it was claimed that for π = 0 both null-rays kkk and ℓℓℓ are necessarily non-
twisting (ρ̄ − ρ = µ̄ − µ = 0). As a consequence it was also claimed in Ref. 1 that the
Griffiths metrics are uniquely characterised by the condition π = 0. However, when π = 0
the only conclusion to be drawn from (10, 14) is that µ(ρ̄ −ρ) = 0. When ρ is real this
indeed leads to the metrics of Ref. 2, while the case µ = 0 appears to have been overlooked
and leads, as shown in the section below, to new classes of solutions.

aThroughout I use the sign conventions and notations of Ref. 6 §7.4, with the tetrad basis vectors taken as kkk, ℓℓℓ,mmm,mmm
with −kaℓa = 1 = mama. In order to ease comparison with the (more familiar) Newman-Penrose formalism, I
will write primed variables, such as κ ′,σ ′,ρ ′ and τ ′, as their NP equivalents −ν ,−λ ,−µ and −π .
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2. The missing class

When π = 0 and µ = 0 the equations from the previous paragraph immmediately lead to
Ψ0 = Ψ1 = Ψ2 = 0 and Ψ3 = ρν − λτ . We try to make some progress by looking for
solutions for which kkk is non-expanding (ρ +ρ = 0). Acting on this condition with the ð
and Þ operators, the GHP equations lead to τ = 0 and

ρ2 + |Φ0|2 = 0, (15)

the ð derivative of which implies λ = Φ2Φ0ρ−1. We translate these results into
Newman-Penrose (NP) language and fix a boost and spatial rotation in the kkk, ℓℓℓ and mmm,mmm
planes such that Φ0 = 1 and ρ = i. It follows that the only non-0 spin coefficients are ρ , ν
and λ =−iΦ2, with the only non-vanishing components of the Weyl spinor being Ψ3 = iν
and Ψ4. As [D, ∆] = 0 coordinates u,v and ζ ,ζ exist such that D = ∂u, ∆ = ∂v and

δ = e−iu(ξ ∂ζ +η∂ζ +P∂u +Q∂v),

ξ ,η ,P,Q being arbitrary functions. The e−iu factor is included for convenience: applying
the [δ , D] commutator to u,v and ζ shows that ξ ,η ,P,Q are functions of v,ζ ,ζ only. In-
troducing new variables n = e−iuν and ϕ = e−2iuΦ2 it follows that also n and ϕ depend
on v,ζ ,ζ only, with the full set of Jacobi equations and field equations reducing to the
following system of pde’s:

Pv + iPϕ −n = 0, (16)

Qv + iQϕ = 0, (17)

ξv + iηϕ = 0, (18)

ηv + iξ ϕ = 0, (19)

e−iuδP− eiuδP−2i|P|2 = 0, (20)

e−iuδQ− eiuδQ−2i(ℜQP−1) = 0, (21)

e−iuδξ − eiuδη − i(ξ P+ηP) = 0, (22)

(23)

eiuδn = −iPn+2|ϕ |2, (24)

eiuδϕ = −2iPϕ −n, (25)

(26)

with the Ψ4 component of the Weyl spinor given by Ψ4 = ie2iu(nP+∆ϕ)+ eiuδn. This
system is integrable and a simple solution is obtained by assuming ϕ = H2 to be a positive
constant: in terms of new coordinates u,v,a,b the null tetrad is given by

ωωω1 =
eiu

2H(a+b)
[ei π

4 −vda− e−i π
4 +vdb], (27)

ωωω3 =
1

H2 [dv− 1
2(a+b)

d(a−b)], (28)

ωωω4 = du− 1
2(a+b)

[e−2vda− e2vdb]. (29)
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The corresponding space-time metric is

ds2 =
1

H2 [−2dv+
1

a+b
d(a−b)]du+

1
H2(a+b)

(e−2vda− e2vdb)dv+
cosh2v

H2(a+b)2 dadb.

(30)
and the Maxwell field and energy-momentum tensor are obtained as

FFF = iH2(ωωω1 −ωωω2)∧ωωω3 + i(e−2iuωωω1 − e2iuωωω2)ωωω4, (31)

TTT = 2H2(e−2iuωωω12
+ e2iuωωω22

+H2ωωω32
)+2ωωω42

. (32)

The Petrov type is III and the space-time admits three Killing vectors, ∂u,∂a − ∂b and
a∂a +b∂b. At first sight it seems odd that the Weyl spinor components Ψ3 and Ψ4 depend
on u, while the frame has been “invariantly” fixed. The explanation however is that the the
frame was fixed by means of a null rotation putting Φ0 = 1, while the Maxwell field itself
does not share the space-time symmetries: FFF is not Lie-propagated along the integral curves
of the null Killing vector ∂u (this also shows that the family of solutions presented here is
distinct from the Einstein-Maxwell solutions admitting null-Killing vectors of Ref. 11.
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