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We explore a family of solutions to Einstein-Maxwell equations with cylindri-

cal symmetry, in which both metric and electromagnetic field are expressed in
terms elementary functions. This is achieved by choosing the integration con-

stants in (00) and (22) components of Einstein equations equal to each other,

which is equivalent to putting electric field (transversal) and magnetic field
(longitudinal), under suitable rescaling of coordinates, equal to each other. We

discuss the connection between our family of solutions and previously known
solutions summarized in the 1983 paper by MacCallum, analyze properties of

spacetime described by our solutions and show how the equal-field condition

can be relaxed perturbatively.
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1. Einstein-Maxwell equations

Consider cylindrical version of Weyl-Lewis-Papapetrou metric,

ds2 =
1

F
(dt+Adφ)2 − F [B(dr2 + dz2) + w2dφ2], (1)

with the electromagnetic vector potential of the form

A = A0dt+A2dφ, (2)

where the functions F , A, B and w as well as A0 and A2 depend only on

the coordinate r 1.

Due to high symmetry of the problem, we can perform one integration

of all Maxwell equations and all Einstein equations but one, reducing them
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to differential equations of first order. For Maxwell equations it is seen

immediately and for Einstein equations we can use identity

ξµν ;ν = 2Rµν ξ
ν , (3)

where ξµν is a bivector associated with Killing vector ξµ, ξµν = ξν,µ−ξµ,ν =

−2ξµ;ν , and Rµν is Ricci tensor. The integrated equations were obtained

first with the help of Hamiltonian formalism2, and then with the help of

complex potentials3 introduced in the series of papers4–6. Neither proce-

dure used the identity (3) explicitly, although in the paper6 the authors

mentioned it with a reference to Synge’s book7.

First integral of Maxwell equations is√
−2gA′A = gABC

B , (4)

and first integral of Einstein equations (five of six) is√
−2ggacg′cb = 2δaAδ

B
b C

AAB − δabCCAC +Kb
a, (5)

where the indices A,B, . . . assume the values 0 and 2, the indices a, b, . . .

assume the values 0, 2, 3 (the coordinates are identified in a usual way

as (x0, x1, x2, x3) = (t, r, φ, z)), 2g is the determinant of the (t, φ) part of

the metric, 2g = det(gAB) = −w2, and CA, Kb
a are constants. After the(

1
1

)
component of Einstein equations is added to the system, we have eight

equations for six functions F , A, B, w, A0, A2; thus, two equations are just

constraints on integration constants.

The trace of the
(
A
B

)
part of (5) yields w = (1/2)KA

Ar, so that by

rescaling r (as well as z, in order to preserve the quadratic form dr2 + dz2)

we obtain w = r. If we also gauge away the constants K0
2 and K2

0, in the(
A
B

)
part of (5) there remains a single constant C = (1/2)(K0

0−K2
2). The

constraint on C can be turned into an independent equation by inserting

expressions for AA in terms of A, A′, F , F ′ into it, and equations (4) can

be then reinterpreted as constraints. However, one of these equations is

satisfied identically, so that we are left with one constraint only.

2. Equal-field solution

We are interested in solutions to equations (4), (5) with C = 0. Their

subclass was found long ago by using transformation to rotating frame

in which the metric was static8. Later it was noted3,9 that the subclass

belongs to a broader family with constant ratio R = A′2/A
′
0. It has R =

−1/k, where k = C0/C2, while a class of solutions proposed in10 has

another distinguished value R = −k. We construct solutions with arbitrary
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R by solving the equations directly; however, our solutions can be obtained

also from solutions withR = −1/k by means of the scaling discussed below.

Introduce a new function f = (Fr/A+)1/2, where A+ = A+k. Einstein

equations yield a pair of coupled equations for the functions f and A,

f ′′

f
− p

2A+r2

(
1 +

3

2

rA′

A+

)
− q + 1/2

2r2
= 0, r[A+(f4 − 1)]′ + pf4 = 0, (6)

where p = 2kC and q = K3
3 − C. For C = 0 we have p = 0, so that the

first equation (6) decouples from the second equation and can be solved

analytically. The solution is

f = r1/2×

{
(k1r

a + k2r
−a), if a > 0

(k1 ln r + k2), if a = 0

[k1 cos(â ln r) + k2 sin(â ln r)], if a = iâ

, (7)

where a =
√

(1 + q)/2. The function A+ is obtained immediately from the

second equation (6), the function F appears in the definition of f , for the

function B = BF we have separate equation and the functions AA are given

algebraically in terms of A, A′, F , F ′. In this way we find

A+ =
kA

f4 − 1
, F r =

kAf
2

f4 − 1
, B = kBr

qf2, (8a)

A0 =
2

C2kA

rf ′

f
, A2 = −(kA + k)A0. (8b)

Finally, upon inserting the expressions for A0, F and A into the first equa-

tion (4), we find{
4a2k1k2
−k21
−â2(k21 + k22)

=
1

2
(C2)2kA, if

{
a > 0

a = 0

a = iâ

. (9)

The solution preserves its form under the scaling t → γt and (r, z) →
γ−1(r, z), if f stays unchanged, which can be always achieved by suitably

scaling (k1, k2), and if the remaining constants scale as (k, kA)→ γ(k, kA)

and kB → γq+2kB . In case the constant κ = kA + k is nonzero, we can

use the procedure to normalize it to ±1 by fixing the unit of length and

choosing γ = |κ|−1, and as a result, to make the potentials A0 and A2 as

well as the field strengths F01 and F21 to be equal in absolute value. In

that sense we call the solution (8) “equal-field solution”. Note, however,

that the field strengths are the same only when computed with respect to

coordinate basis. The physical field strengths which refer to the orthonormal

basis eα̂
µ carried by the observer at rest, E1̂ = F0̂1̂ =

√
F/BF01 and

B3̂ = F2̂1̂ = (1/
√
FB)(F21 −AF01)/r, differ from each other.



June 14, 2018 21:47 WSPC Proceedings - 9in x 6in elv˙abs page 4

4

3. Properties of spacetime

The (t, φ) part of the metric can be expressed in two different ways,

ds22 =
1

F
(dt+Adφ)2 − Fr2dφ2 =

1

F
dt2 −Fr2(dφ− ωdt)2, (10)

where the functions F , ω are defined in terms of the function A = A2 −
F 2r2 as F = −A/(Fr2), ω = −A/A. The cylinders with 1/F = 0 are

static limits (surfaces separating regions in which observers can stay at rest

from regions in which they must rotate) and the cylinders with F = 0

are chronological limits (surfaces separating regions in which time travel

is forbidden from regions in which it is allowed). Suppose a > 0, so that

f = (r/r1)a+ ± (r/r2)−a− , where a± = a± 1/2 and the sign in front of the

second term is given by the sign of kA. For kA > 0, a > 1/2 as well as

for kA < 0, a < 1/2 the function f has one minimum, defining a cylinder

composed of photon orbits; in the latter case it has also one zero, defining

a singular “cylinder” (in fact, a line parallel to the z axis).

The behavior of light cones in equal-field solution is depicted in fig 1. In

Fig. 1. Regions in parametric space with and without rotating domain in the neighbor-

hood of photon orbits (left) and light cones in two typical spacetimes (right).

the left panel, regions in the plane (a, r2/r1) with static (S) and rotating (R)

neighborhood of photon orbits are shown; in the right panel, light cones in

metric with kA > 0, a > 1/2 (upper diagram) and kA < 0, a < 1/2 (lower

diagram) are displayed at various values of r in the planes tangential to

respective cylinders. The sign of kA is denoted by + and − in the left panel

and singular “cylinder”, photon cylinder, static limits and chronology limits

are denoted by sing, ph, s and c in the right panel.
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4. Perturbing the metric

Equations for the functions f and µ = A−1+ , rewritten in the variable τ =

ln r, read

f̈ − ḟ −Qf =
p

2

(
µ− 3

2
µ̇
)
f,

(f4 − 1

µ

).
= −pf4, (11)

where Q = (1/2)(q + 1/2) and the dot denotes differentiation with respect

to τ . Suppose the parameter p is small. In the zeroth order in p we have

the previous expressions f0 = k1e
a+τ +k2e

−a−τ and µ0 = k−1A (f40 − 1), and

if we write down the equations for the first corrections to f and A,

f̈1 − ḟ1 −Qf1 =
p

2kA
(f0 − 6ḟ0)f40 ,

[
(f40 − 1)A1 +

4f30
µ0

f1

].
= −pf40 (12)

(we have skipped the term proportional to f0 from the first equation, since

it can be always removed by redefining Q), we find

f1 =
p

2kA
f0Φ0, A1 = −p f40 + 1

(f40 − 1)2
Φ0, (13)

where Φ0 =

∫
f40 dτ . To complete the calculation of the perturbed metric,

we can determine F1 from the definition of f and B1 from the equation

for B. Finally, we can impose the first equation (4) as a constraint on the

perturbed solution. With the notations k1 = k10(1+pλ1), k2 = k20(1+pλ2),

kA = kA0(1 + pλA) and C2 = C2
0 (1 + pλC), the resulting equation reads

λC = −1

2

(
λ1 + λ2 − λA −

1

2a2kA0

)
. (14)
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2. D. M. Chitre, R. Güven, Y. Nutku, J. Math. Phys. 16, 475 (1975).

3. N. Van den Bergh, P. Wils, J. Phys. A, 3843 (1982).

4. W. Kinnersley, J. Math. Phys. 18, 1529 (1977).

5. W. Kinnersley, D. M. Chitre, J. Math. Phys. 18, 1538 (1977).

6. W. Kinnersley, D. M. Chitre, J. Math. Phys. 19, 1926 (1978).

7. J. Synge: Relativity: The General Theory, North-Holland, Amsterdam

(1960).

8. N. Arbex, M. M. Som, Il Nuovo Cim. 13 B, 49 (1973).

9. M. MacCallum, J. Phys. A16, 3854 (1983).

10. J. D. McCrea, J. Phys. A15, 1587 (1982).


