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Topological defects formed in the early stages of our universe can play a crucial role in understand-
ing anisotropic deviations of the Friedmann Lemâıtre Robertson Walker model we observe today.
These defects are the result of phase transitions associated with spontaneous symmetry breaking in
gauge theories at the grand unification energy scale. The most interesting defects are cosmic strings,
vortex-like structures in the famous gauged U(1) abelian Higgs model with a ’Mexican-hat” poten-
tial. Other defects, such as domain walls and monopoles are probably ruled out, because they should
dominate otherwise the energy density of our universe. This local gauge model is the fundament of
the standard model of particle physics, where the Higgs-mechanism provides elementary particles
with mass. It cannot be a coincidence that this model also explains the theory of superconductivity.
The decay of the high multiplicity (n) super-conducting vortex into a lattice of n vortices of unit
magnetic flux is energetically favourable and is experimentally confirmed. It explains the famous
Meissner effect. This process could play a fundamental role by the entanglement of cosmic strings
just after the symmetry breaking. The stability of the lattice depends critically on the parameters
of the model, especially when gravity comes into play. The questions is how the imprint of the
cosmic strings could be observed at present time. Up to now, no evidence is found. The recently
found alignment of the spinning axes of quasars in large quasar groups on Mpc scales, could be a
first indication of the existence of these cosmic strings. The temporarily broken axial symmetry
will leave an imprint of a preferred azimuthal-angle on the lattice. This effect is only viable when
a scaling factor is introduced. This can be realized in a warped five dimensional model. The warp
factor plays the role of a dilaton field on an equal footing with the Higgs field. The resulting field
equations can be obtained from a conformal invariant model. Conformal invariance, the missing
symmetry in general relativity, will then spontaneously be broken, just as the Higgs field. The
dilaton field, or equivalently, the warp factor, could also contribute to the expansion of the universe
as it can act as a dark energy term coming from the bulk spacetime. It makes the cosmic string tem-
porarily super-massive. This process could solve the cosmological constant and hierarchy problem.
It is conjectured that the dilaton field has a dual meaning. At very early times, when the dilaton
field approaches zero, it describes the small-distance limit of the model, while at later times it is a
warp (or scale) factor that determines the dynamical evolution of the universe. When more data of
quasars of high redshift will become available, one could proof that the alignment emerged after the
symmetry breaking scale and must have a cosmological origin. The effect of the warp factor on the
second-order perturbations could also be an indication of the existence of large extra dimensions.
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I. INTRODUCTION

The standard model (SM) of the electroweak and strong interactions is a successful framework in which one studies
elementary particles and includes the principles of quantum mechanics (QM). On the other hand, general relativity
(GR) is also a very impressive theory constructed by theoretical physicists. It describes large scale structures in our
universe and one can construct solutions which are related to real physical objects, for example the Kerr solution,
the end stage of a collapsing spinning star. A legitimate question is if there are other axially symmetric solutions in
GR. It came as a big surprise that there exist vortex-like solutions in Einstein’s theory. These vortex solutions occur
as topological defects at the symmetry breaking scale in the Einstein-abelian U(1) scalar-gauge model, where the
gauge field is coupled to a complex charged scalar field[1–4]. The solution shows a surprising resemblance with type
II superconductivity of the Ginzburg-Landau(GL) theory[5, 6], where the electro-magnetic(EM) gauge invariance is
broken and the well-known Meissner effect occurs[7, 8]. One says that the phase symmetry is spontaneously broken and
the EM field acquires a length scale, which introduces a penetration depth of the gauge field Aµ in the superconductor
and a coherence length of Φ. In the relativistic case one says that the photon acquires mass. Because we have three
space dimensions, these solutions of the GL theory behave like magnetic flux vortices ( Nielsen Olesen strings[3])
extended to tubes and carry a quantized magnetic flux 2πn, with n an integer, the topological charge or winding
number of the field. It was discovered by Abrikosov[8] that these vortices can form a lattice. These localized vortices
(or solitons) in the GL-theory are observed in experiments. The phenomenon of magnetic flux quantization in the
theory of superconductivity is characteristic for so-called ordered media. The vortex solution possesses mass, so it will
couple to gravity. The resulting self-gravitating cosmic strings (CS) still show all the features of superconductivity,
but the stability conditions complicate considerably. The stability of the formed lattices depends critically on the
parameters of the model, certainly when gravity comes into play. The force between the gauged vortices depends on

the ratio α ≡ m2
A

m2
Φ

, i.e., the masses of the gauge and scalar field, the GL parameter, the energy scale at which the

phase transition takes place and the spacetime structure. When the mass of the Higgs field is greater than the mass of
the gauge field, vortices will repel each other. So gravity could balance the vortices. The energy of the vortex grows
by increasing multiplicity n, so configurations with n > 1 can be seen as multi-soliton states and it is energetically
favourable for these to decay into n well separated n = 1 solitons. Vortices with high multiplicity can be formed
during the symmetry breaking. The total vortex number n is the sum of multiplicities n1, n2, .. of isolated points
(zero’s of Φ)[6].

Our universe, described by a spatially homogeneous and isotropic Friedmann Lemâıtre Robertson Walker (FLRW)
spacetime, shows significant large-scale inhomogeneous structures, for example, the cosmic web of voids with galaxies
and clusters in sheets, filaments and knots, the angular distribution in the cosmic microwave background (CMB)
radiation and the recently found alignment of polarization axes of quasars in large quasar groups(LQG’s) on Mpc-
scales[9, 10]. The question is if these complex nonlinear structures of deviation from isotropy and homogeneity have
a cosmological origin at a moment in the early stage of the universe. One possibility of this origin could be a CS-
network formed by the self-gravitating Einstein-scalar-gauge model. A pleasant fact is that this model has very few
parameters and hence more appealing than other models such as inflationary models. It is believed that the mass
per unit length of the CS is of the order of the GUT scale, Gµ ≈ 10−7. Observational bounds, however, predict
a negligible contribution of CS’s to initial density perturbation from which galaxies and clusters grew. Besides the
inconsistencies with the power spectrum of the CMB, radiative effects of the CS embedded in a FLRW spacetime are
rapidly damped in any physical regime[11]. Further, the lensing effect of these CS’s are not found yet.

There is, however, another possibility to detect the presence of CS’s. On a warped spacetime, the fields can become
temporarily super-massive by the warp factor in the framework of string theory (or M-theory). Naively one expect
that gravity will play a subordinate role compared with the other fields. In 4D counterpart models this is true, but
not in warped spacetimes. The super-massive CS’s can be formed at a symmetry breaking scale much higher than
the GUT scale, i.e., Gµ >> 1. So their gravitational impact increases considerably, because the CS builds up a huge
mass in the bulk space. Here we consider the warped brane world model of Randall-Sundrum (RS)[12, 13], with one
large extra dimension. The result is that effective 4D Kaluza-Klein(KK) modes are obtained from the perturbative
5D graviton. These KK modes will be massive from the brane viewpoint. The modified Einstein equations on the
brane and scalar gauge field equations will now contain contributions from the 5D Weyl tensor[14–17]. In order to
explore these effective field equations, we apply an approximation scheme, i.e., a multiple scale method(MSM). In
this method one can handle the decay of the n-vortex in a perturbative way. The MSM or high-frequency method is
an approved tool to handle nonlinearities and secular terms arising in the partial differential equations(PDE) in GR.
When there is a high curvature situation, a linear approximation of the Einstein equations is not suitable[18–20].

Other issue related to our 5D warped spacetime is the behavior at small scales, i.e., when the warp factor or scale
factor of the spacetime becomes very small. We conjecture that our warp factor becomes the dilaton field which is
needed to make the Lagrangian conformal invariant. Breaking of the conformal symmetry (which will occur when
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other fields come into play; after all we experience today a huge discrepancy in scales), can be compared with the
BEH mechanism in the standard model of particle physics.

In section 2 we will outline the model under consideration. This section is a review of a former study[21–24]. In
section 3 we will explain the connection with conformal invariance.

II. THE SUPERCONDUCTING STRING MODEL IN WARPED SPACETIME

A. Outline of the model

Our model will be based on a warped five-dimensional FLRW spacetime

ds2 =W(t, r, y)2
[
e2(γ(t,r)−ψ(t,r))(−dt2 + dr2) + e2ψ(t,r)dz2 + r2e−2ψ(t,r)dϕ2

]
+ dy2, (1)

withW = W1(t, r)W2(y) is the warp factor. All standard model fields reside on the brane, while gravity can propagate
into the bulk. The 5D Einstein equations are[17]

(5)Gµν = −Λ5
(5)gµν + κ2

5δ(y)
(
−Λ4

(4)gµν + (4)Tµν

)
, (2)

with κ5 = 8π(5)G = 8π/(5)M
3

pl, Λ4 the brane tension, (4)gµν = (5)gµν − nµnν , and nµ the unit normal to the brane.
The effective 4D Einstein-Higgs-gauge field equations are[17, 21]

(4)Gµν = −Λeff
(4)gµν + κ2

4
(4)Tµν + κ4

5Sµν − Eµν , (3)

DµDµΦ = 2
dV

dΦ∗
, (4)∇

µ
Fνµ =

1

2
iε
(

Φ(DνΦ)∗ − Φ∗DνΦ
)
, (4)

with DµΦ ≡ (4)∇µΦ+iεAµΦ, (4)∇µ the covariant derivative with respect to (4)gµν , V (Φ) = 1
8β(ΦΦ∗−η2)2 the potential

of the Abelian Higgs model and η the symmetry breaking scale. Fµν is the Maxwell tensor. The righthand side of the
Einstein equations contains a contribution Eµν from the 5D Weyl tensor and carries information of the gravitational
field outside the brane. The quadratic term in the energy-momentum tensor, Sµν , arising from the extrinsic curvature

terms in the projected Einstein tensor. (4)Tµν represents the matter content on the brane, in our case the scalar and
gauge fields. It is clear that de general solution for the vortex will be cylindrical symmetric (polar coordinates (r, z, ϕ
and in the notation of NO), so we parameterize the self-gravitating scalar gauge field as

Φ = ηX(t, r)einϕ, Aµ =
n

ε

[
P (t, r)− 1

]
∇µϕ, (5)

n is the topological charge or winding number of the scalar field. For a detailed treatment of the issue, we refer to
Jaffe and Taub[5]. The warp factor can be solved from the 5D Einstein equations:

W = W2(y)W1(t, r) =
±e
√
− 1

6 Λ5(y−y0)

√
τr

√(
d1e(

√
2τ)t − d2e−(

√
2τ)t
)(
d3e(

√
2τ)r − d4e−(

√
2τ)r

)
, (6)

In figure 1 we plotted several possible solutions. Note that the warp factor depends on r and t, so the contribution to
the spacetime evolutions will be different for different stages in time. In the early universe the warp factor represents a

FIG. 1. Three different plots of the warp factor for some values of the constants di and τ .
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dilaton field, conformally coupled to gravity. In section 3 we will return to this issue. The model under consideration
is invariant under the group U(1) of local gauge transformations (of the second kind)

Φ(x)→ eiχ(x)Φ(x ), Aa(x)→ Aa(x ) +
1

e
∂aχ(x), (7)

The conserved electromagnetic current becomes now Ja = ie
2 (ΦDaΦ∗ − Φ∗DaΦ). Since the minima of V (Φ) are at

|Φ| = η, this symmetry is spontaneously broken and the field acquires a non-zero vacuum expectation value. Let
us now take a closer look at the potential (figure 2). Suppose we take a closed loop L in physical space in polar
coordinates(r, z, ϕ) around the string, where z is a kind of ”dummy” coordinate: δϕ = 2π. The far field will then take

FIG. 2. Mapping the degenerated minima of the potential to position space.

the form Φ ≈ ηeiϕ. The position of the string is located by taking the closed loop Γ. If we shrink Γ to a point, then
the phase jump of 2π is no longer defined. This phase jump can only be resolved continuously if the field rises to the
top of the potential Φ = 0. We say that the energy of the ”false” vacuum is trapped. This is a topological defect.
The vacuum manifold M is not simply connected. M contains enclosed holes about which loops can be trapped. In
a non-cylindrical symmetric configurations The curve Γ would shrink to a point and we produce a discontinuity in
the phase factor, contradicting the smoothness of the Higgs field. The static finite energy configuration cannot be
stable, since we can press it down to the vacuum. So in this case the jump is not allowed. However, the abelian Higgs
model is topological stable by the cylindrical symmetry. In this physical cylindrical symmetric space we can have
again similar non-trivial windings n about a degenerated circle of minima. By calculating the magnetic flux ( q~ = e)

Θ =

∮
Γ

~A.d~r =
~
q

∮
Γ

~∇φ.d~r, (8)

and using Stokes’s theorem, we obtain that the magnetic flux lines are quantized by 2πn
e . One could wonder what

happens when quantum fluctuations excites the vortex. This will be treated in the next section. The energy of the
string in flat spacetime is given by

E =
1

2

n2

e2r2
(∂rP )2 +

1

2
η2(∂rX)2 +

1

2
n2η2P

2X2

r2
+

1

8
βη4(X2 − 1)2 (9)

The energy is proportional with n2, so there can be no exact ground state for the string carrying multiple flux quanta
(the expression changes when gravity comes into play and new features will emerge). There are some characteristic
parameters:

penetration and coherence lenght : ν =
1

eη
, ζ =

√
2

η
√
λ

masses : mΦ = η
√
λ, mA = eη

widths : δΦ ∼
1

mΦ
, δA ∼

1

mA

Bogomol′nyi parameter : αb ≡
m2
A

m2
Φ

=
e2

λ

Ginsburg − Landau parameter : κ =
ν

ζ
=

√
λ√
2e
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The two parameters αb and η play an important role by the calculation of the forces between the vortices. For small
r, E can be approximated by E ≈ n2 lnκ

e2~2ν2 The field equations become

∂rrP =
∂rP

r
+ e2η2PX2, ∂rrX = −∂rX

r
+ n2XP

2

r2
+

1

2
λη2X(X2 − 1) (10)

In figure 3 a typical solution of the NO vortex string is visualized.

FIG. 3. Typical numerical solution of the Higgs (P) and gauge field (X).

A particular feature of these particle-like solutions is their topological structure characterized by an integer n, the
topological charge, or winding number of the field. The topological charge can also be identified as the net number of
the new type of particle. As can be seen from Eq. (9), the energy increases with n2. For n = 1 we have the minimal
energy situation, which is stable as it cannot decay into a topological trivial field. These field configurations are also
called solitons.

B. The approximation

In order to study perturbations in the model, one can apply the multiple-scale approximation, very suited at high
curvature situations[18–20]. The method is called a ”two-timing” method, because one considers the relevant fields
Vi in point x on a manifold M dependent on different scales (x, ξ, χ, ...):

Vi =

∞∑
n=0

1

ωn
F

(n)
i (x, ξ, χ, ...). (11)

Here ω represents a dimensionless parameter, which will be large (the ”frequency”, ω >> 1). So 1
ω is a small expansion

parameter. Further, ξ = ωΘ(x), χ = ωΠ(x), ... and Θ,Π, ... scalar (phase) functions on M. The parameter 1
ω can be

the ratio of the characteristic wavelength of the perturbation to the characteristic dimension of the background. On
warped spacetimes it could also be the ratio of the extra dimension y to the background dimension or even both.
When one substitutes the expansions of the field variables

gµν = ḡµν(x) +
1

ω
hµν(x, ξ) +

1

ω2
kµν(x, ξ) + ...,

Aµ = Āµ(x) +
1

ω
Bµ(x, ξ) +

1

ω2
Cµ(x, ξ) + ...,

Φ = Φ̄(x) +
1

ω
Ψ(x, ξ) +

1

ω2
Ξ(x, ξ) + ..., (12)

into the equations, one obtains first order equations in u = t− r for the first and second order perturbations[22–24].
They are of the form

∂uU̇1 = Ā, ∂uU̇2 = D̄1U̇2 +D2U̇1 +D3 (13)

where Ā and D̄1 depends solely on the background fields, while D2, D3 depend on the first order perturbations and
background fields. In principle one could push the approximation to higher orders. In this way one obtains a wavelike
approximation which is asymptotically finite[18]. To highest order in ω, the equations deliver constraints on h,B and
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C. In other approximations, they are a priori used as gauge conditions. Moreover, the original symmetry on the
gauge field will be broken by the appearance of Bt besides Bϕ.

In our approximation scheme we can gain a lot of insight in the behavior of the clustering of vortices when gravity
is present. The equations (Eq. (13)) are hard to solve. However, the energy-momentum tensor components can tell
us a lot about the behavior of the model.

C. Excitation of the vortices and the quasar link

In the expansion of Eq. (12) we parameterized the scalar field in subsequent orders as

Φ̄ = ηX̄(t, r)ein1ϕ, Ψ = Y (t, r, ξ)ein2ϕ, Ξ = Z(t, r, ξ)ein3ϕ. (14)

It turns out that the solution to second order is no longer axially symmetric. There appear terms like sin(n2 − n1)ϕ
in the field equations. The most interesting information can be found in the energy-momentum tensor components

4T
(0)
tϕ = X̄P̄ Ẏ n1sin[(n2 − n1)ϕ], (15)

4T
(0)
tt = Ẏ 2 + Ẏ (∂tX̄ + ∂rX̄)cos[(n2 − n1)ϕ] +

e2ψ̄

W̄ 2
1 r

2ε

(
εḂ2 + n1Ḃ(∂rP̄ + ∂tP̄ )

)
, (16)

While 4T̄ tϕ = 0, we conclude from Eq. (16) that the axial symmetry is broken already to first order. The energy

FIG. 4. Excitation and decay of a high multiplicity vortex into correlated vortices of unit flux n = 1. Top: the Abrikosov
lattice in Euclidean space. Bottom: correlated vortices with preferred azimuthal angle ϕ in curved spacetime after the symmetry
breaking.

4T
(0)
tt contribution to first order contains the warp factor in the denominator. So the energy depends crucially on the

age of the universe. Terms in the energy can dominate at early times and are negligible at late times in the evolution
of the universe. In the second order contributions there appear terms like cos(n3 − n1)ϕ[24]. The azimuthal-angle
dependency are expressed in trigonometrical functions with extrema which differ mod(πk ). After the excitation of the
vortex with multiplicity n, it will decay into n vortices of unit flux in a regular lattice (figure 4). In flat spacetime,
without gravity (upper picture in figure 4), this arrangement is experimentally observed. The Abrikosov vortices
form a hexagonal lattice such that the energy is minimal. This process depends on the Bogomol’nyi parameter. In
the special case of αb = 1 ( mass of scalar and gauge field are equal) are the forces between the vortices easier to
understand. It was a great achievement of Bogomol’nyi[25] to find the decoupled equations

∂rrX = −1

r
∂rX +

1

X
∂rX

2 +
1

2
e2η2X(X2 − 1), P =

r

nηX
∂rX (17)

Without the Bogomol’nyi equations it is difficult to understand the cancellation of the forces. The movement of the
gauged vortices are even harder to understand[6].

There is another characterization of the winding number. It is the total vortex number, i.e., the number of points
in the plane with multiplicity taken into count where Φ = 0. The zero’s of Φ are then a set of n isolated points
zi, i = 0..n in C such that Φ(z, z∗) ∼ cj(z − zj)nj with nj the multiplicity of zj and n =

∑
zj
nj . This n-vortex

solution represents a finite energy configuration with n flux quanta, provided Φ and A satisfy the boundary conditions

lim
r→0

X = 0, lim
r→0

P = 1, lim
r→∞

X = 1, lim
r→∞

P = 0 (18)
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The collection of n vortices of unit flux is energetically more appealing than a n-flux vortex. The energy density
is peaked around the zero’s of Φ. Hence they can be identified by the location of the vortices. In general, one
must solve the time-dependent GL equations in order to get insight in the stability issues. In this case there is a
gradient flow, which makes the analysis very complicated. The PDE’s are badly nonlinear and one relies often on
numerical simulation. The temporarily broken axial symmetry will be the onset of emission of electro-magnetic and
gravitational waves. From Eq. (15) we see that the angular momentum will fade away when n2 approaches n1 and the
axial symmetry is restored. The first and second order perturbations of the scalar and gauge fields in higher winding
number decay into NO strings of n=1. In order to understand the azimuthal-angle (ϕ) preference, one must consider
the terms of 4Tϕϕ, for example

4T
(0)
ϕϕ = e−2γr2Ẏ (∂tX̄ − ∂rX̄)cos[(n2 − n1)ϕ] +

n1e
2ψ̄−2γ̄

W̄ 2
1 ε

Ḃ(∂rP̄ − ∂tP̄ ), (19)

4T
(1)
ϕϕ = e−2γr2Ż(∂tX̄ − ∂rX̄)cos[(n3 − n1)ϕ] +

e2ψ̄−2γ̄

W̄ 2
1 ε

n1Ċ(∂rP̄ − ∂tP̄ ) + e−2γ̄r2Ẏ (∂tY − ∂rY ) + X̄2n1P̄ εB

+
[e2ψ̄−2γ̄

W̄ 2
1

Ẏ (∂tX̄ − ∂rX̄)(h44 + e−2γ̄r2h11) + n1X̄P̄Y (n2 − n1 + n1P̄ ) +
1

2
βe−2ψ̄W̄ 2

1 r
2X̄Y (η2 − X̄2)

+e−2γ̄r2(∂tX̄∂tY − ∂rX̄∂rY )
]
cos[(n2 − n1)ϕ] +

e4ψ̄−4γ̄

W̄ 4
1 r

2ε2

[
r2εḂn1(∂rP̄ − ∂tP̄ ) +

1

2
r2n2

1(∂rP̄
2 − ∂tP̄ 2)

+
1

2
W̄ 2

1 ε
2e2ψ̄(∂tX̄

2 − ∂rX̄2)
]
h11 +

[ 1

2W̄ 2
1

e2ψ̄−2γ̄(∂tX̄
2 − ∂rX̄2)− 1

8
β(X̄2 − η2)2

]
h44.(20)

Tϕϕ plays an important role in the interaction of the strings. Positive terms in the expression indicate ”pressure” in

the direction of the Killing vector field ( ∂
∂ϕ )i (and negative ”tension”). The result is that the interaction contribution

can change sign dynamically (dependent of the warp factor). This Killing vector must be normalized such that, along
a closed integral curve, the parameter ϕ varies van 0 to 2π with ϕ = 0 and ϕ = 2π identified. This will provide
boundary conditions for the metric fields close to the axis of the string, such as ∂r(r

2e−2ψ)(0) = 1. We observe in the

expressions of 4T
(0)
ϕϕ and 4T

(0)
tϕ that when sin(n2−n1)ϕ becomes zero, cos(n2−n1)ϕ has its maximum. So there is an

emergent imprint of a preferred azimuthal angle ϕ on the lattice of vortices when the ground state is reached ( n=1).

This effect can also be seen in the 4T
(0)
zz component which is not equal to −4T

(0)
tt as is the case in static models. The

second order contribution 4T
(1)
ϕϕ contains terms like cos(n3 − n1)ϕ and produces a complicated extrema[24].

The recently observed alignment of the spinning axes of quasars in LQG’s on Mpc-scales can be explained by
our model. The observations were carried out at the European Southern Observatory, Paranal with the Very Large
Telescope equipped with the FORS2 instrument. There was a confirmation of the alignment for radio galaxies by
the Giant Metrewave Radio Telescope in the ELAIS-N1 field. This curious effect cannot be the result of statistical
fluctuations[26]. The origin must be found in the early universe just after the symmetry breaking, as described in our
model. Specially, the two preferred orientations perpendicular to each other in quasar groups of less richness could
be the second order effect in our model by the appearance of the trigonometrical terms with periodicity difference of
π
2 . The correlated n = 1 vortices with preferred azimuthal angle, emerged on a correlation length smaller than the

horizon on that moment and took place at the Ginzburg temperature ∼ 1
βη . These correlated regions will survive

to later times, because at this moment the gravity contribution from the 5D bulk comes into play. The warp factor
( see Figure 2) will have different contributions to the field equations for different times. The mass per unit length
will contain the warp factor. Just after the symmetry breaking, the vortex will acquire a huge mass Gµ > 1 and will
initiate the perturbations of high-frequency and justifies our high-frequency approximation. This is the reason that the
regions with (n = 1, ϕ = ϕ0) will stick together and are observed in LQG’s with aligned polarization axes[9, 10]. Some
specific features of this alignment which could be explained with our model, must be confirmed by more observations
on quasars and radio sources at high redshift. Alignment at high redshifts would confirm that the mechanism took
place indeed in the early universe.

D. Breaking of the axial symmetry from a different viewpoint

Self-gravitating objects in equilibrium exhibit a striking analogue with the mathematical model of the Maclaurin-
Jacobi sequences and its bifurcation points[27]. Bifurcation points that are of particular interest to us here are those
marking the onset secular instability, i.e., the dynamical breaking of axially symmetry ( or better formulated: the
spacetime possesses 2 in stead of 3 Killing vectors). This means the appearance of an off-diagonal metric function.
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In our model it is the transition from the Weyl metric (after the substitution t → iz, z → it) to the Papapetrou
metric, expressed by the appearance of the Ttϕ components in first and second order. It is remarkable that this
symmetry breaking can be compared with the second order phase transition in type II superconductivity[28–30],
which is the basis of our model (see also Slagter[24] for more details). An initial axially symmetric configuration,
as is the case in our perturbative model, can dynamically spontaneously be broken, where equatorial eccentricity
plays the role of order-parameter. The equatorial eccentricity ε ≡ b

a , with b and a the two equatorial axes, can be
expressed through the azimuthal-angle ϕ(t). The particular orientation of the ellipsoid in the frame (r, ϕ, z) expressed
through ϕ0 ≡ ϕ(t0), will be at t > t0 determined by the transformation ϕ → ϕ0 − Jt, where J is the rotation
frequency (circulation or ”angular momentum”) of the coordinate system. The angle ϕ0 is fixed arbitrarily at the
onset of symmetry breaking. This arbitrariness of ϕ0, i.e., the orientation of the ellipsoid at t = t0 can be compared
with the massless Goldstone-boson modes of the spontaneously broken symmetry of continuous groups. The phase
transition take place on the same time scale that the vorticity is destroyed by dissipative mechanism and J is lost.
The end point is a lower energy state that belongs to the Jacobi or Dedekind sequence of equilibrium ellipsoids[31]. In
the original paper of Chandrasekhar and Lebovitz[28], in the Newtonian case, the deformations of the axisymmetric
configuration by an infinitesimal nonaxisymmetric deformation is described in terms of a Lagrangian displacement
ςa(r, z, ϕ) = ς̄a(r, z)einϕ, with n an integer. However, the real part of the einϕ must be put in by hand, in contrast
to our result: it appears in a perturbative way as a first and second order effect. The temporarily broken axial
symmetry will be the onset of emission of electro-magnetic and gravitational waves, while the string relaxes to the
NO configuration. It is a consequence of the coupled system of PDE’s that a high-frequency scalar field can create
through an electro-magnetic field, a high frequency gravitational field and conversely. It is the appearance of the term

sin(n2−n1)ϕ in the first order term 4T
(0)
tϕ (Eq.(15)) and explained in section 2c, which triggers this angular momentum

and the axially symmetry will be restored when n2 becomes equal to n1 again. The second order contribution 4T
(1)
tt

shows terms like Ḃ2h44[24], indicating the interaction between the high-frequency EM and gravitational waves. It
contains the warp factor in the denominator. In the early stages of the universe W1 is still small and the term is
significant. As time increases, it will fade away.

III. RELATION WITH CONFORMAL INVARIANCE

In the preceding sections we found that the warp factor W plays the role of a ”scaling” factor, different at different
epochs in time. There is, however, another interpretation, related to the dilaton field in conformal invariant gravity
theory. The brane-part W1(t, r) could be solved from the 5D Einstein equations and was given in Eq.(6). The
differential equation could be separated and reads ( we rename, for historical reason, W1 in ω, not to confuse with
the expansion parameter in Eq.(11))

∂ttω = ∂rrω +
1

ω

(
(∂rω)2 − (∂tω)2

)
+

2

r
∂rω. (21)

One can then write the spacetime[32]

gµν = ω2W 2
2 g̃µν + nµnν (22)

where the dilaton is conformally coupled to gravity and embedded in a smooth M4 ⊗R manifold by the action

I =

∫
d4x
√
−g̃
{
− 1

12

(
Φ̃Φ̃∗ + ω̄2

)
R̃− 1

2

(
DαΦ̃(DαΦ̃)∗ + ∂αω̄∂

αω̄
)
− 1

4
FαβF

αβ − V (Φ̃, ω)− 1

36
κ2

4Λ4ω̄
4
}

(23)

We wrote Φ = 1
ω Φ̃ and Newton’s constant is absorbed in a redefinition of ω̄. ω is taken complex in order to make the

dilaton field comparable with the scalar field ( see solution C in figure 1). A term ∼ ω4 can be added to the action.
Such a term could play a role in the generation of a cosmological constant. This action is local (Weyl-) conformal
invariant by the transformation

g̃µν → Ω2g̃µν , ω̄ → 1

Ω
ω̄, Φ̃→ 1

Ω
Φ̃. (24)

when there is no mass term in V , because a mass term spoils the tracelessness of the energy momentum tensor. One
could say that the conformal symmetry is spontaneously broken, just as the gauge symmetry of in the Brout-Englert-
Higgs mechanism is spontaneously broken.

However, there will be no singular behavior when the former ”scale”-function ω approaches zero (the small distance
limit), because the Einstein field equations will contain in the dominator the term ω2 + |Φ|2 (the scalar field and
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dilaton field are treated here on equal footing). So we could have a regular description of gravity at very small
distances[33–36].

The action appears to be entirely renormalizable for the dilaton field. After integrating over ω but not yet over g̃µν ,
the resulting action stays local conformal invariant. The problem is that g̃µν in Eq.22 is not flat. One could consider
an addition gauge transformation on g̃µν to make it Ricci-flat. Calculations on renormalizability and the appearance
of anomalies would then be simplified[34].

On a flat background the choice of ω is unique. In curved spacetime it is fixed only if we know the evolution of
spacetime and after choosing a coordinate frame. We conjecture that in our warped 5D model is it fixed by the
evolution of the Einstein equations: the dilaton field plays the role of the warp factor.

It is a tantalizing idea to connect the mass generation in the Higgs-mechanism with the tracelessness of Tµν (
see for example the treatment of Mannheim[36]) and the cosmological constant problem. If one omits a kinematic
mass term ( ∼ βη2X2ω2) in the action (so Tµν is traceless) and include a fermion field in the action, then one can
dynamically generate massive particles without breaking the tracelessness of Tµν . Moreover, the cosmological constant
can naturally arise in these dynamical mass theories and its value is constrained.

There is another possible way out for the breaking of the tracelessness of Tµν . In our 5D warped spacetime, the
trace of the energy momentum tensor[32]

1

ω̄2 +X2

[
16κ2

4βη
2X2ω̄2 − κ4

5n
4
( (∂rP )2 − (∂tP )2

r2ε2

)2

e8ψ̃−4γ̃
]

(25)

will contain contributions from S ( see Eq.(3)). The demand of tracelessness will deliver constraints on the parameters
of the model in a dynamical way. Newton’s constant, for example, reappears by the conformal breaking ( note that
this constant is hidden in the effective quartic interaction term for the Φ field). It is conjectured that constraints on the
small distance behavior, all the physical constants, including the masses and cosmological constant, are constrained
to values that are computable in terms of the Planck unit. For example , all β-coefficients of the renormalization
group must vanish by the adjustment of the coupling constants (note that the zeros of the beta functions are isolated
stationary points in quantum field theory).

In the conformal model there are still many problems unsolved, for example, the anomalies, which must be con-
strained to cancel out. Further, the black hole complementarity in conformal gravity is not yet well-understood[33].

IV. CONCLUSION

By considering an axially symmetric warped five-dimensional warped spacetime, were the standard model fields
are confined to the brane, we find in a nonlinear approximation, an emergent azimuthal-angle dependency of Nielsen-
Olesen vortices just after the symmetry breaking at GUT scale. Using a approximation scheme, the azimuthal-angle
dependency appears in the first and second order field equations as trigonometrical functions sin(ni − nj)ϕ and
sin(ni − nj)ϕ(i > j), with ni the multiplicities of subsequent perturbation terms of the scalar field. Vortices with
high multiplicity decay into a lattice with entangled Abrikosov vortices. The stability of this lattice of correlated
flux n = 1 vortices with preferred azimuthal-angle is guaranteed by the contribution from the bulk spacetime by
means of the warp factor: the cosmic string becomes super-massive for some time during the evolution. We used this
azimuthal-angle correlation for the explanation of the recently observed alignment of polarization axes of quasars in
large quasar groups. The detailed behavior of this alignment can be explained with our model. The two different
orientations perpendicular to each other in quasars groups of less richness could be a second order effect in our model.

When gravity is coupled to standard model fields and one demands the validity on all distance scales, one runs
into problems. These are: the dark energy problem, the cosmological constant problem, the hierarchy problem and
the problem how probe the small distance structure of our spacetime. Conformal invariance could be the solution
for at least some of these problems. It could be the missing symmetry of nature. In our model, by identifying the
warp factor as a dilaton field, one will not encounter singular behavior when the dilaton field becomes very small.
At present time, the warp-like manifestation of the dilaton field describes the exponential expansion of our universe.
Moreover, the exceptional smallness of the cosmological constant, Λ �∼ 10−120 compared to the calculated vacuum
energy could be explained in the warped 5D spacetime by the warp factor.

More data of high-redshift quasars will be needed in order to test the second order effect predicted in our model.
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