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Solid inflation is a cosmological model where inflation is driven by fields which enter the

Lagrangian in the same way as body coordinates of a solid matter enter the equation
of state, spontaneously breaking spatial translational and rotational symmetry. We

construct a simple generalization of this model by adding a scalar field with standard

kinetic term to the action. In our model the scalar power spectrum and the tensor-to-
scalar ratio do not differ from the ones predicted by the solid inflation qualitatively, if

the scalar field does not dominate the solid matter. The same applies also to the size

of the scalar bispectrum measured by the non-linearity parameter, although our model
allows it to have different shapes. The tensor bispectra predicted by the two models do

not differ from each other in the leading order of the slow-roll approximation. In the case
when contribution of the solid matter to the stress-energy tensor is much smaller than

the contribution from the scalar field, the tensor-to-scalar ratio and the non-linearity

parameter are amplified by factors ε−1 and ε−2 respectively. The full version of the
paper can be found in1.
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1. Model Under Consideration

Multi-field models of inflation lead to ”local” non-Gaussianity peaking at ”squeezed”

configuration of momenta (k1 ≈ k2 � k3). One of less standard examples of

such models is solid inflation2,3, driven by a three-component scalar field φI which

enters the Lagrangian in the same way as body coordinates of solid matter enter

the equation of state. Thus, the matter action is supposed to be invariant under

internal translations and rotations,

φI →M I
Jφ

J , M I
J ∈ SO(3), φI → φI + CI , CI ∈ R3, I, J = 1, 2, 3, (1)

The simplest possible background configuration, φI = δIi x
i, with xi denoting spatial

coordinates, breaks the spatial translational and rotational symmetry, but in a flat

Friedmann–Robertson–Walker–Lematre universe it is invariant under the combined

spatial-internal transformations. As shown by Endlich et al.3, in this model there

appears anisotropic dependence of the scalar bispectrum on how the squeezed limit

is approached. Further development of the theory includes papers4–7.

In our paper we study a combined inflationary model including scalar field ϕ

with standard kinetic term and three-component scalar field φI with symmetries

given above. The matter Lagrangian of the theory is

L = −1

2
∂µϕ∂µϕ+ F (ϕ,X, Y, Z), X = TrB, Y =

Tr(B2)

X2
, Z =

Tr(B3)

X3
. (2)

Following3, we have introduced the three independent quantities X, Y and Z invari-

ant under transformations (1) composed of the body metric BIJ = −gµν∂µφI∂νφJ .
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(We have changed the sign of BIJ in order to reconcile it with the signature of the

metric tensor (+ − −−), which we use.) Our model represents a straightforward

combination of the solid inflation and basic single-field models. It can be considered

as, for instance, a simple toy model of interaction of fields driving the solid inflation

with fields of an effective field theory of the standard model.

In the inflationary model (2) the slow-roll parameter ε = −Ḣ/H2 is

ε = p+ q − 1

3
pq, p =

ϕ̇2

2M2
PlH

2
, q = X

FX
F
, (3)

where p and q are the slow-roll parameters of the single-field inflation and the solid

inflation respectively. In our work we restricted ourselves to the special case when

both p and q are small.

2. Power Spectrum

From8 we adopt the definition of the scalar quantity ζ that parametrizes the curva-

ture perturbations. The corresponding power spectrum Pζ(k) is defined by the two-

point function in the late-time limit, 〈0| ζk1ζk2 |0〉 = [Pζ(k1)/(2k31)](2π)5δ(3)(k1 +

k2). It is usually approximated by a power-law function, Pζ(k) ∝ knS−1, where nS ,

called the scalar spectral index, is close to one for a nearly flat spectrum. In the

leading order of the slow-roll approximation the spectral tilt is

nS − 1 = −2
c5L,eσpeε

(δϕ)
c + (εe − pe) p(U)c

εe +
(
c5L,eσ − 1

)
pe

, (4)

where

cL =

√
1 +

2

3

XFXX
FX

+
8

9

FY + FZ
XFX

(5)

is the longitudinal sound speed of medium filling the universe, σ = e2Nmin(ε(δϕ)
c −p(U)

c ),

p(U) = p−c2LQ+ 1
2ηQ+ 5

2ηL, ε(δϕ) = ε+2p+ 1
3
Fϕϕ
H2 , Q = ε−p, and both ηQ = Q̇/(εH)

and ηL = ċL/(cLH) have been assumed to be of the first order in the slow-roll

parameters. The subscript e stands for quantities evaluated at the time τe when

the inflation ends, τe ≈ 0−, the subscript c stands for quantities evaluated at the

reference time τc when the longest mode of observational relevance today with the

wavenumber kmin ∼ Htoday (atoday ≡ 1) exits the horizon, and Nmin ∼ 60 is the

minimal number of e-foldings.

We have computed also the tensor spectral tilt and tensor-to-scalar ratio in our

model. The results are

nT − 1 = 2c2L,cεc − 2(1 + c2L,c)pc, r =
Pγ
Pζ

=
4c5Lε

2

ε+ (c5L − 1) p
. (6)
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3. Bispectrum

The three-point function of the scalar ζ can be computed with the use of the

in-in formalism9. The scalar bispectrum Bζ(k1, k2, k3), defined by the relation

〈ζk1
ζk2

ζk3
〉 = (2π)3δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3), in our model consists of two

parts,

Bζ(k1, k2, k3) = FYB
Y
ζ (k1, k2, k3) +Nζc2L,cF̃ B̃ζ(k1, k2, k3), (7)

parametrized by three independent parameters of the theory, namely FY ,

F̃ = X (FXY + FXZ) = ±MPl√
2

√
p (FY ϕ + FZϕ) , (8)

andNζc2L,c, whereNζ is a number of the order of the number of e-foldings. Following

the conventions of10, we introduce dimensionless variables x = k2/k1 and y = k3/k1
and describe the bispectrum by the function x2y2Bζ(1, x, y) defined in the region

1−x ≤ y ≤ x, 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1. Shapes of the functions x2y2BYζ (1, x, y) and

x2y2B̃ζ(1, x, y) are depicted in the first two panels of fig. 1. (All functions in the

figure are normalized to have value 1 in the equilateral limit, x = y = 1.) Our model

Fig. 1. Shapes of the scalar bispectrum. Flat triangles represent the zero plane.

with the additional degree of freedom allows for a wider range of different shapes of
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the bispectrum than the pure solid inflation. The overall bispectrum peaks in the

squeezed limit, unless F̃ /FY = (5/6)N−1ζ c−2L,c, when it peaks in the equilateral limit

instead, see the third panel of fig. 1. When F̃ /FY exceeds (5/6)N−1ζ c−2L,c the relative

sign of the bispectrum in the squeezed limit and the bispectrum in the equilateral

limit changes, as demonstrated in the fourth panel.

Following the definition (4) in11, we find for the non-linearity parameter

fNL =
εc[

εc +
(
c5L,c − 1

)
pc

]2
(

19415

13122

1

c2L,c

FY
F
− 5

18
Nζ

F̃

F

)
. (9)

We can see that if ε − p ∼ ε ∼ p, the non-linearity parameter is of the order

fNL ∼ (FY /F )c−2L ε−1, the same as for the solid inflation without the scalar field,

or fNL ∼ Nζ(F̃ /F )ε−1. Supposing that c5L ∼ ε we have fNL ∼ (FY /F )c−2L ε−3 or

fNL ∼ Nζ(F̃ /F )ε−3 if ε−p is of the order ε2. The condition ε−p . ε2 leading to an

amplification of the non-linearity parameter can be written as q � p, which means

that the contribution of solid matter to the overall stress-energy tensor is negligible

in comparison to the contribution of the scalar field.

In our model the tensor bispectrum computed in the leading order of the slow-

roll approximation does not differ from the tensor bispectrum in solid inflation. It

is affected by the presence of the scalar field only in higher orders of the slow-roll

approximation, which have not been included in our work.
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