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6INAF-IASF, Sezione di Bologna, via Gobetti 101, 40129 Bologna, Italy

So far large and different data sets revealed the accelerated expansion rate of the Universe, which
is usually assumed to be driven by the so called dark energy, that, according to recent estimates,
provides about 70% of the total amount of the matter- energy in the Universe. The nature of dark
energy is yet unknown. Whatever future data discover, the simple plot of the Hubble diagram
(HD) as a function of redshift will remain one of the primary tool for cosmological investigations, as
the conversion between redshift and distance depends on the specific parameters of the underlying
models. We show that different dark energy models can be tested, by using a high redshift GRBS
HD, obtained calibrating the Ep,i- Eiso correlation in long GRBs. It turns out that the Cosmological
Constant model is not favored by the present data.

I. INTRODUCTION

Starting at the end of the 1990s, observations of high-
redshift supernovae of type Ia (SNIa) revealed the cur-
rent accelerated expansion of the Universe ([see e.g. 1–6]),
which is driven by the so called dark energy. The so far
proposed models of dark energy range from a non-zero
cosmological constant (see for instance [9]), to a poten-
tial energy of some not yet discovered scalar field (see
for instance [10]), or effects connected with the inhomo-
geneous distribution of matter and averaging procedures
(see for instance [11]). Recentlyit has been examined
the idea that dark energy originates from the backreac-
tion of quantum fluctuations originating in the primor-
dial inflationary universe. In this paper we analyze the
observational constraints of a model proposed by Gla-
van, Prokopec and Starobinsky (GPS model,[17]). In this
model an ultra-light, non-minimally coupled scalar field,
which is a spectator field during inflation, but, during
quantum fluctuations, naturally grow large such that, by
the end of inflation, it reach super-Planckian values, and
is viable for DE. Very briefly we consider different com-
petitive cosmological scenarios:

i) an EOS empirically parametrized ,

ii) an exponential scalar field model for dark energy ,

iii) GPS model ,

iii) an early time dark energy model .

In our high-redshift investigation, extended beyond the
supernova type Ia (SNIa) Hubble diagram, we use the
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Union2 SNIa data set, the gamma-ray burst (GRB) Hub-
ble diagram, constructed by calibrating the correlation
between the peak photon energy, Ep,i, and the isotropic
equivalent radiated energy, Eiso [15]. Here we take into
account possible redshift evolution effects in the coeffi-
cients of this correlation, assuming that they can be mod-
eled through power low terms. We consider also a sample
of 28 measurements of the Hubble parameter, compiled
in [16], Gaussian priors on the distance from the baryon
acoustic oscillations (BAO), and the Hubble constant h.
Our statistical analysis is based on Monte Carlo Markov
Chain (MCMC) simulations to simultaneously compute
the full probability density functions (PDFs) of all the
parameters of interest.

II. COMPETITIVE DARK ENERGY MODELS

In the Friedman-Lemaitre-Robertson- Walker
paradigm, all possibilities can be characterized by
the dark energy EOS, w(z). A prior task of observa-
tional cosmology is to search for evidence for w(z) 6= −1.
If we assume that the dark energy evolves, the im-
portance of its equation of state is significant and it
determines the Hubble function H(z), and any deriva-
tion of it is needed to obtain the observable quantities.
Actually it turns out that:

H(z, θ) = H0

√
(1− Ωm)g(z, θ) + Ωm(z + 1)3

where g(z, θ) = ρde(z)
ρde(0)

= exp3
∫ z
0
w(x,θ)+1
x+1 dx, w(z, θ) is

any dynamical form of the dark energy EOS, and θ =
(θ1, θ1.., θn) are the EOS parameters. In the Chevalier-
Polarski Linder (CPL) model [12, 13], the dark energy
EOS given by

w(z) = w0 + w1z(1 + z)−1 , (1)
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A. An exponential scalar field

In this section the possible physical realization of dark
energy is a cosmic scalar field, ϕ, minimally coupled to
the usual matter action. Here we take into account the
specific class of exponential–type potential; in particular
we consider an exponential potential for which general
exact solutions of the Friedman equations are known[20,
21]. Assuming that ϕ is minimally coupled to gravity,
the cosmological equations are written as

H2 =
8πG

3
(ρM + ρϕ) ,

Ḣ +H2 = −4πG

3
(ρM + ρϕ + 3(pM + pϕ)) ,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 .

Here

ρϕ ≡
1

2
ϕ̇2 + V (ϕ) , pϕ ≡

1

2
ϕ̇2 − V (ϕ) , (2)

and

wϕ ≡
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (3)

We consider the potential

V (ϕ) ∝ exp

{
−
√

3

2
ϕ

}
, (4)

for which the general exact solution exists [20] and [21].

B. Observational tests of the GPS dark energy

At the late stage of evolution, at z ≤ 10, the Universe is
filled in with dark matter, baryonic matter and dark en-
ergy. Dark matter is usually assumed to be cold and colli-
sionless so both types of matter could be treated as pres-
sureless dust with mass-energy density %m. Dark matter
and baryonic mater does not interact with dark energy,
so both matter components and dark energy could be
treated as non interacting perfect fluids. The continuity
equation for matter in the FLRW model has the simple
form

%̇m + 3H%m = 0 , (5)

corresponding equation for the GPS dark energy is

%̇DE + 3H(1− ω0a
α

β + aα
)%DE = 0 , (6)

where H =
ȧ

a
and ω0 , α , β are constants. Integrating

both equations and using the standard relation a(z) =
1

1+z , we get

%m(z) = %M (0)(1 + z)3 , (7)

%DE = %DE(0)(1 + z)3(1−ω0)
(1 + β(1 + z)α

1 + β

)3ω0
α , (8)

where %m(0) is the present density of matter and %DE(0)
is the present density of dark energy. The Hubble expan-
sion rate is

3H2(z) = %m(0)(1 + z)3 +

%DE(0)(1 + z)3(1−ω0)
(1 + β(1 + z)α

1 + β

)3ω0
α

)
. (9)

C. Early Dark Energy

In this section we consider a model characterized by
a non negligible amount of dark energy at early times:
these models are connected to the existence of scaling or
attractor-like solutions, and they naturally predict a non-
vanishing dark energy fraction of the total energy at early
stages, Ωe, which should be substantially smaller than its
present value. Following [22, 23] we use a parametrized
representation of the dark energy density fraction, ΩDE ,
which depends on the present matter fraction, Ωm, the
early dark energy density fraction, Ωe , and the present
dark energy equation of state w0:

ΩDE(z,Ωm,Ωe, w0) =

Ωe
(
−
(
1− (z + 1)3w0

))
− Ωm + 1

Ωm(z + 1)−3w0 − Ωm + 1

+Ωe
(
1− (z + 1)3w0

)
.

It turns out that the Hubble function takes the form:

H2(z,Ωm,Ωe, w0,Ωγ , Neff ) =

ΩDE(z,Ωm,Ωe, w0) +

+(z + 1)3Ωm +

(z + 1)4Ωγ

(
7

8

(
4

11

) 4
3

Neff + 1

)
. (10)

Here Neff = 3 for three standard model neutrinos that
were thermalized in the early Universe and decoupled
well before electron-positron annihilation.

III. OBSERVATIONAL DATA

In our approach we use measurements on SNIa and
GRB Hubble diagram, distance data from the BAO, and
a list of 28 H(z) measurements, compiled in [16].

A. Supernovae Ia

SNIa observations gave the first strong indication of
the recent accelerating expansion of the Universe. First
results of the SNIa teams were published by [3] and [2].
Here we consider the recently updated Supernovae Cos-
mology Project Union 2.1 compilation [26], which is an
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update of the original Union compilation and contains
580 SNIa, spanning the redshift range (0.015 ≤ z ≤ 1.4).
We compare the theoretically predicted distance modu-
lus µ(z) with the observed one through a Bayesian ap-
proach, based on the definition of the distance modulus
in different cosmological models:

µ(zj) = 5 log10(DL(zj , {θi})) + µ0 , (11)

where DL(zj , {θi}) is the Hubble free luminosity dis-
tance, and θi indicates the set of parameters that ap-
pear in different dark energy equations of state consid-
ered in our analysis. The parameter µ0 encodes the Hub-
ble constant and the absolute magnitude M . Given the
heterogeneous origin of the Union data set, we used an
alternative version of the χ2:

χ̃2
SN({θi}) = c1 −

c22
c3
, (12)

where

c1 =

NSNIa∑
j=1

(µ(zj ;µ0 = 0, {θi)} − µobs(zj))2

σ2
µ,j

,

c2 =

NSNIa∑
j=1

(µ(zj ;µ0 = 0, {θi)} − µobs(zj))
σ2
µ,j

,

c3 =

NSNIa∑
j=1

1

σ2
µ,j

.

It is worth noting that

χ2
SN(µ0, {θi}) = c1 − 2c2µ0 + c3µ

2
0 , (13)

which clearly becomes minimum for µ0 = c2/c3, so that
χ̃2
SN ≡ χ2

SN(µ0 = c2/c3, {θi}).

B. Gamma-ray burst Hubble diagram

Gamma-ray bursts are visible up to high redshifts
thanks to the enormous energy that they release, and
thus may be good candidates for our high-redshift cos-
mological investigation. We performed our analysis us-
ing a new updated GRB Hubble diagram data set ob-
tained by calibrating a 3-d Ep,i– Eiso–z relation. Actu-
ally, even if recent studies concerning the reliability of
the Ep,i – Eiso relation confirmed the lack, up to now, of
any statistically meaningful evidence for a z dependence
of the correlation coefficients [14], we include in the cali-
bration terms representing the z-evolution, which are as-

sumed to be power-law functions: giso(z) = (1 + z)
kiso

and gp(z) = (1 + z)
kp (see for instance[14]), so that

E
′

iso =
Eiso

giso(z)
and E

′

p,i =
Ep,i

gp(z)
are the de-evolved quan-

tities. Therefore we consider a 3D correlation:

log

[
Eiso

1 erg

]
= b+ a log

[
Ep,i

300 keV

]
+

+ (kiso − a kp) log (1 + z) . (14)

In order to calibrate our de-evolved relation we apply
the same local regression technique previously adopted
([14, 15] ), but we consider a 3D Reichart likelihood:

L3D
Reichart(a, kiso, kp, b, σint) =

1

2

∑
log (σ2

int + σ2
yi + a2σ2

xi)

log (1 + a2)

+
1

2

∑ (yi − axi − (kiso − α)zi − b)2

σ2
int + σ2

xi + a2σ2
xi

, (15)

where α = a kp. We also used the MCMC method
to maximize the likelihood and ran five parallel chains
and the Gelman-Rubin convergence test. We found that
a = 1.87+0.08

−0.09, kiso = −0.04 ± 0.1; α = 0.02 ± 0.2 ;

σint = 0.35+0.02
−0.03, so that b = 52.8+0.03

−0.06. After fitting
the correlation and estimating its parameters, we used
them to construct the GRB Hubble diagram.

C. Baryon acoustic oscillations data

Baryon acoustic oscillations data are promising stan-
dard rulers to investigate different cosmological scenarios
and models. They are related to density fluctuations in-
duced by acoustic waves that are created by primordial
perturbations. To use BAOs as a cosmological tool, we
define:

dz =
rs(zd)

dV (z)
, (16)

where zd is the drag redshift, rs(z) is the comoving sound
horizon ,

rs(z) =
c√
3

∫ (1+z)−1

0

da

a2H(a)
√

1 + (3/4)Ωb/Ωγ
,

and dV (z) the volume distance. Moreover, BAO mea-
surements in spectroscopic surveys allow to directly esti-
mate the expansion rate H(z), converted into the quan-

tity DH(z) =
c

H(z)
, and put constraints on the comoving

angular diameter distance DM (z).

D. H(z) measurements

The measurements of Hubble parameters are a com-
plementary probe to constrain the cosmological param-
eters and investigate the dark energy [16]. The Hubble
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parameter depends on the differential age of the Uni-
verse as a function of redshift and can be measured using
the so-called cosmic chronometers. dz is obtained from
spectroscopic surveys with high accuracy, and the dif-
ferential evolution of the age of the Universe dt in the
redshift interval dz can be measured provided that op-
timal probes of the aging of the Universe, that is, the
cosmic chronometers, are identified. The most reliable
cosmic chronometers at present are old early-type galax-
ies that evolve passively on a timescale much longer than
their age difference, which formed the vast majority of
their stars rapidly and early and have not experienced
subsequent major episodes of star formation or merging.
Moreover, the Hubble parameter can also be obtained
from the BAO measurements. We used a list of 28 H(z)
measurements, compiled in [16].

IV. STATISTICAL ANALYSIS

To test the cosmological parameters described above,
we use a Bayesian approach based on MCMC method.
In order to set the starting points for our chains, we first
performed a preliminary and standard fitting procedure
to maximize the likelihood function L(p):

L(p) ∝
exp (−χ2

SNIa/GRB/2)

(2π)
NSNIa/GRB

2 |CSNIa/GRB |1/2
×

exp (−χ2
BAO/2)

(2π)NBAO/2|CBAO|1/2
×

× 1√
2πσ2

ωm

exp

[
−1

2

(
ωm − ωobsm

σωm

)2
]

(17)

× 1√
2πσ2

h

exp

[
−1

2

(
h− hobs
σh

)2
]

exp (−χ2
H/2)

(2π)NH/2|CH |1/2

× 1√
2πσ2

R
exp

[
−1

2

(
R−Robs

σR

)2
]
.

Here

χ2(p) =

N∑
i,j=1

(
xi − xthi (p)

)
C−1ij

(
xj − xthj (p)

)
, (18)

p is the set of parameters, N is the number of data points,
xi is the i−th measurement; xthi (p) indicate the theoreti-
cal predictions for these measurements and depend on the
parameters p. Cij is the covariance matrix (specifically,
CSNIa/GRB/H indicates the SNIa/GRBs/H covariance

matrix); (hobs, σh) = (0.742, 0.036) [ Riess et al. 2009],
and (ωobsm , σωm) = (0.1356, 0.0034) [8]. It is worth not-
ing that the effect of our prior on h is not critical at all
so that we are certain that our results are not biased by

this choice. The term
1√

2πσ2
R

exp

[
−1

2

(
R−Robs

σR

)2
]

in the likelihood (18) considers the shift parameter R:

R = H0

√
ΩM

∫ z?

0

dz′

H(z′)
, (19)

where z? = 1090.10 is the redshift of the surface of
last scattering [29], [30] . According to the Planck data
(Robs, σR) = (1.7407, 0.0094).

Finally, the term
exp (−χ2

H/2)

(2π)NH/2|CH |1/2
in Eq. (18) is the

likelihood relative to the measurements of H(z) . For
each cosmological model we sample its space of parame-
ters, by running five parallel chains and use the Gelman
- Rubin diagnostic approach to test the convergence.

V. DISCUSSION AND CONCLUSIONS

The Ep,i – Eiso correlation has significant implications
for the use of GRBs in cosmology. Here we explored a
3D Amati relation in a way independent of the cosmo-
logical model, and taking into account a possible red-
shift evolution effects of its correlation coefficients [14]

parametrized as power low terms: giso(z) = (1 + z)
kiso

and gp(z) = (1 + z)
kp . Low values of kiso and kp

would indicate negligible evolutionary effects. Using the
recently updated data set of 162 high-redshift GRBs,
we applied a local regression technique to estimate the
distance modulus using the recent Union SNIa sample
(Union2.1). The derived calibration parameters are sta-
tistically fully consistent with the results of our previous
work [14, 20], and confirm that the correlation shows, at
this stage, only weak indication of evolution. The fit-
ted calibration parameters have been used to construct a
calibrated GRB Hubble diagram, which we adopted as a
tool to constrain different cosmological models: we con-
sidered the CPL parameterization of the EOS, an expo-
nential dark energy scalar field, and, finally a model with
dark energy at early times. To compare these models we
assumed that the CPL is true and checked the occurrence
of χ2

EDE/Quintessence/GPS < χ2
CPL, varying the param-

eters specific of the EDE, exponential and GPS scalar
field models respectively. Our statistical analysis indi-
cates that the GPS models seems slightly favored with
respect to the others. It means that to further restrict
different models of dark energy it will be necessary to
increase the precision of the Hubble diagram at high red-
shift, and to perform more detailed analysis of the influ-
ence of dark energy on the process of formation of large
scale structure and in particular on its late evolution at
z < 2. Future GRB missions, like, e.g., the proposed
THESEUS observatory [31], will increase substantially
the number of GRB usable to construct theEp,i – Eiso

correlation up to redshift z ' 10 and will allow better
cosmological investigations.
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