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Pondering Enrique Loedel ’s 1948 symmetrical dual spacetime chart whose angle’s sine

rather than tan reflects scaled velocity between inertial reference frames, led to a cu-

rious discovery in 2004: Angles of a spherical triangle whose sines law ratio is one,
geometrise relativistic velocity composition. Unexplored in a related renowned 1909 pa-

per by Arnold Sommerfeld and kept under wraps until publication of a recent book, the

elementary germane criterion points to seemingly hitherto unknown hemispherical spi-
rals which reflect the Gudermannian dependency of a fixed thrust rocket’s home frame

velocity on rocket clock time. This opens new paths for analysing relativistic acceleration

contexts. ‘Hemix’-generated real-metric λ|τ surfaces visualisable in R3 and vindicated by
radar trajectory attributes—oddly a strategy rather unexploited in relativity—succinctly

epitomise not only Born’s ‘rigid motion’ problem, but also non-Minkowski spacetime

paradigms such as Bells’ spaceships paradox and other extended medium acceleration
scenarios.

Keywords: relativistic spherical triangles; rigor mortis acceleration; real metric surface;

Bell’s spaceship problem; hemix spiral; hemicoid surface.
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Fig. 1. Relativistic velocity compostion

1. Unit sines law ratio—‘relativistic’—spherical triangles

10th century Persian mathematician Abul Wafa Buzjania established the spherical

triangles’ sines law whereby the ratio of the sines of surface angles α̂, β̂, φ̂ to the

sines of their respective opposite centre angles α, β, φ, is the same for all three

angles. The spherical triangles’ cosines law for a surface angle φ̂

cosφ = sinα sinβ cos φ̂+ cosα cosβ , (1)

was not formulated and proven until Johannes Müller—Regiomontanus—wrote his

classic De Triangulis Omnimodis 1 in 1464.b

As easily shown, no exclusively acute spherical triangle can have unit sine ratio

angles. If however, as on Fig. 1’s unit radius sphere, one surface angle is the supple-

ment of its opposite centre angle e.g. φ̂ = π − φ with α̂ = α and β̂ = β, the sines

ratio remains plus one i.e. sin φ̂ = sin(π−φ) = sinφ but cos φ̂ = cos(π−φ) = − cosφ

and cosines law (1) becomes, after dividing across by cosφ:

cosα cosβ

cosφ
= 1− sinα sinβ

(
− cosφ

cosφ

)
= 1 + sinα sinβ. (2)

If angles α, β, φ are all acute, as shown in Fig. 1, (2) rearranges as:

sinφ =
sinα+ sinβ

1 + sinα sinβ
. (3)

aDiscoverer of the identity sin(α+ β) ≡ sinα cosβ + cosα sinβ.
bThe German astronomer’s work was published in Nuremberg 1533, almost six decades after his

murder in Rome in 1476.



April 6, 2018 8:44 WSPC Proceedings - 9.75in x 6.5in SAPSUBM page 3

3

Fig. 2. Relativity acceleration visualized.

Reflecting the Loedel chart 2, we substitute v = sinα, w = sinβ andc (−u) = sinφ,

to obtain the familiar relativistic velocity composition equation—scaled for c = 1:

(−u) =
v + w

1 + vw
. (4)

2. The differential relativity spherical triangle
3,4With distances scaled by α/c2 and times by α/c, where α (now reallocated dif-

ferently) is the fixed rocket’s unscaled own- (‘proper’) acceleration, we now relabel

Fig. 1’s previous centre angles α, β and φ in Fig. 2 as a unit thrust rocket’s initial,

differential and final velocity angles φ,∆θ and φ+ ∆φ respectively with v = sinφ,

over a minuscule rocket own-time period ∆τ . Of special interest are differential

spherical triangles as ∆τ and accordingly angles ∆θ and ∆φ all together tend to-

wards zero. dThe rocket’s differential velocity ∆v is obtained by rotating point M

about axis OH through ‘door’ angle ∆θ to point J on arc HJN , and dropping a

perpendicular onto point K on perpendicular NKF which equals velocity v + ∆v.

From the geometry,e we have for incremental velocity ∆v (segment NK):

∆v ≈ 1.∆θ cosφ cos (φ+ ∆φ) ≈ ∆θ(1− sin2 φ) = ∆θ(1− v2) i.e.

dv

dθ
= 1− v2. (5)

cFor convenience velocities v, w and u are considered cyclic. Hence if v and w are positive, u will

be negative and the resulting forward velocity is (−u).
dA tangent to arc HJN at vertex N is perpendicular to radius NO. Also line NKF is perpen-
dicular to HO. Hence angles JNK and HON both equal φ+ ∆φ.
eNJ ≈MN cosφ, NK ≈ NJ cos(φ+ ∆φ) etc.
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Fig. 3. Differential reference frame angle arcs forming a spiral ‘hemix’.

As ∆v = 1.∆τ , velocity composition v + ∆v ≈ v+1.∆τ
1+v.1.∆τ also yields

dv

dτ
= 1− v2. (6)

In the limit as ∆τ, ∆θ and ∆φ tend towards zero, a spherical triangles’

lateral arc increment dθ exactly represents a unit thrust rocket’s

own-time differential dτ .

3. The hemix: an ‘own-history-line’
5Considering an infinitude of cascaded differential spherical triangles as angle in-

crements become ever smaller, differential lateral arc segments corresponding to

rocket clock time intervals form a smooth continuous spherical curve as in Figure 3.

The rocket’s accumulated own-clock time τ =
∫ τ

0
dτ equals the curve’s path length

as well as its ‘swept longitude’—by virtue of equations (5) and (6). We label this

unique curve ‘the hemix own-history-line’ and assign it a special symbol: H.

Hemix H =
Sph

[1, τ, φ] =
Cyl

[v, τ,
1

γ
] =

Cyl
[tanh τ, τ,

1

cosh τ
] =

xyz
[tanh τ cos τ, tanh τ sin τ,

1

cosh τ
].

(7)
f Although resembling Nuñes 1537 loxodromes, curve H seems to be absent in

the literature e.g. Davies’ prolonged two-part 1834 treatise6 on spherical curves,

Yates 1947 Handbook on Curves 7 and the Encyclopédie des Formes Mathematique

Remarquables—http://www.mathcurve.com.

fCylindrical radius r also equals home frame velocity i.e. r = sinφ = v = tanh τ and elevation
z equals its colatitude’s cosine i.e. z = cosφ = 1/γ = 1/ cosh τ . Rocket own-time τ equals curve

path length and traversed longitude θ. This hemispherical curve has several further properties of
mathematical interest described in5.
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4. Arbitrary fixed own-acceleration relationships

The familiar standard equations relating home frame time and distance of a rocket

accelerating at fixed own-thrust α with its (‘proper’) own-time τ , are—with times

scaled for unit limit speed :

αt = sinhατ, v = tanhατ, γ = coshατ, αx = coshατ − 1. (8)

Identity cosh2 ατ − sinh2 ατ ≡ 1 gives the hyperbolic worldline equation:

(αx+ 1)2 − (αt)2 = 1. (9)

Equations (8) prompt us to define a scaled hemix on a radius 1/α hemisphere tracing

a fixed thrust rocket’s own-time τ proportionately to ατ :

Scaled Hemix Hα =
Sph

[
1

α
, ατ, φ] =

xyz
[tanhατ cosατ, tanhατ sinατ,

1

coshατ
]/α.

(10)

4.1. Radar interval derivations

As described in8, we consider home frame observer clocks and rocket clocks syn-

chronised as the rockets are launched together a distance L apart and accelerate

at generally different fixed own-thrusts (‘proper accelerations’). Represented in a

single ‘home’ reference frame’s spacetime chart as in Fig. 4, the rear rocket with

own-thrust αr has its launch event situated at the chart’s origin [0, 0]. In accordance

with equations (8) and (9), its home frame hyperbolic worldline coordinates are

[xr, tr] =

[
coshαrτr − 1

αr
,

sinhαrτr
αr

]
. (11)

A front rocket with arbitrary fixed own-thrust α
f

has its launch event at [L, 0] and

hyperbolic worldline coordinates[
L+ x

f
, t

f

]
=

[
L+

coshα
f
τ
f
− 1

α
f

,
sinhα

f
τ
f

α
f

]
. (12)

A ‘radar photon’ emitted at rear rocket’s own-time τ́r = sinh−1 αr t́r
αr

has emission

coordinate x́r = coshαr τ́r−1
αr

. Reflected by the front rocket at its own-time τ̂
f

=
sinh−1 α

f
t̂
f

α
f

and reflection coordinate L + x̂
f

= L +
coshα

f
τ̂
f
−1

α
f

, the photon travels

at unit limit speed in the home frame. Hence (L+ x̂f )− x́r = t̂f − t́r i.e.(
L+

coshα
f
τ̂
f
− 1

α
f

)
−
(

coshαr τ́r − 1

αr

)
=

sinhα
f
τ̂
f

α
f

− sinhαr τ́r
αr

.

This simplifies as the general forward radar transit equation:

e−αf
τ̂

α
f

=
e−αr τ́

αr
+

1

α
f

− 1

αr
− L. (13)
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Fig. 4. Home frame world-surface of a ‘rigor mortis’ acceleration medium with diagonal radar
trajectories and curved fixed velocity loci.

The reflected photon meets rear rocket r at home time t̀r = sinhαr τ̀r
αr

and home

frame position x̀r = coshαr τ̀r−1
αr

, over equal home-frame distance and time intervals

(L+ x̂
f
)− x̀r = t̀r − t̂f :

L+
coshα

f
τ̂ − 1

α
f

− coshαr τ̀r − 1

αr
=

sinhαr τ̀r
αr

−
sinhα

f
τ̂

α
f

.

This yields the general reverse radar transit equation:

eαf
τ̂

α
f

=
eαr τ̀

αr
+

1

α
f

− 1

αr
− L. (14)

Imagining this photon to itself be reflected again i.e re-emitted forwards towards

the front rocket, by replacing τ́ with τ̀ and τ̂ with τ̌ in (13) we obtain for the front

rocket re-reflection time τ̌ :

e−αf
τ̌

α
f

=
e−αr τ̀

αr
+

1

α
f

− 1

αr
− L. (15)

(13) and (14) yield the forward general fixed thrust rockets’ radar equation:

1

α
f

2
=

[
e−τ́αr

αr
+

1

α
f

− 1

αr
− L

] [
eτ̀αr

αr
+

1

α
f

− 1

αr
− L

]
. (16)

(14) and (15) give us the reverse general fixed thrust rockets’ radar equation:[
eτ̂αf

α
f

− 1

α
f

+
1

αr
+ L

][
e−τ̌αf

α
f

− 1

α
f

+
1

αr
+ L

]
=

1

αr2
. (17)
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5. The ‘rigor mortis’ accelerating medium—‘Born rigidity’

5.1. Rigor mortis radar intervals

g 9The constant parameter terms in relationships (13)–(17) are eliminated by ap-

plying what we call the ‘rigor mortis’ conditionh

L =
1

α
f

− 1

αr
i.e. α

f
=

αr
1 + Lαr

and αr =
α

f

1− Lα
f

. (18)

Forward radar equation (16) e(τ̀−τ́)αr = αr
2

α
f

2 = (1 + Lαr)
2 then yields the constant

forward ‘rigor mortis’ radar interval:

τ̀ − τ́ =
2

αr
ln(1 + Lαr) =

2

αr
ln(

αr
α

f

). (19)

Also from reverse radar equation (17) e−(τ̌−τ̂)α
f =

α
f

2

αr
2 = (1 − Lα

f
)2, a second

value emerges—the constant reverse ‘rigor mortis’ radar interval :

τ̌ − τ̂ = − 2

α
f

ln(1− Lα
f
) =

2

α
f

ln(
αr
α

f

). (20)

Moreover
τ̀ − τ́
τ̌ − τ̂

=
αf
αr

=
1

1 + Lαr
= 1− Lαf . (21)

The ‘rigor mortis’ forward and reverse radar intervals are constant and their ratio

equals the rocket accelerations’ ratio α
f
/αr.

5.2. Rigor mortis space and time dispersals

For any set v = tanh(τ
f
α

f
) = tanh τr and γ = cosh(τα

f
) = cosh τr , (11), (12) and

(18) yield the rockets’ home frame time dispersal

t
f
− t

r
=

sinh(τ
f
α

f
)

α
f

− sinh τr
1

= γv

[
1

α
f

− 1

]
= γvL,

and their home frame distance dispersal

(x
f

+ L)− x
r

=
γ − 1

α
f

+ L− γ + 1 = γ

[
1

α
f

− 1

]
− 1

α
f

+ L+ 1 = γL.

From the (Larmor-)Lorentz transformation for the corresponding comoving frame,

time dispersal turns out to be permanently zero.i

∆τ = γ
[
(t

f
− t

r
)− v(x

f
+ L− x

r
)
]

= γ [γvL− vγL] = 0. (22)

gThe commonly used term ‘rigid motion’ is anachronistic since it has a different meaning in
differential geometry.
hThis relationship was established in an elaborate manner in 2003 by Woodhouse 10 (p.115).
i(22) and (23) were derived in 2010 as solutions to a set of mathematical equations by Franklin 11.
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Distance dispersal remains equal to the rockets’ launch separation:

γ
[
(x

f
+ L− xr )− v(t

f
− tr )

]
= γ

[
γL− v2γL

]
= L. (23)

5.3. The ‘rigor mortis’ home frame world-surface

We now rescale times and lengths so that rear rocket own-thrust αr as well as c

are one. Fig. 4 shows home frame rigor mortis worldlines not only for the rear and

front rockets but also for intermediate medium increments identified by their launch

distance l from the rear rocket l0 and assumed to have their own ‘minuscule rockets’

as well as—‘in the limit’—zero mass. Hence no inter-increment forces or delays are

entailed. Each arbitrary medium increment l then accelerates at α = 1/(1 + l)

(equation (18)) with its worldline elevated from start at x0 = l.

Also shown are fixed velocity loci which share comoving inertial frames. Emitted

and reflected radar trajectories appear as diagonal lines corresponding to scaled c =

±1. Substituting L = 0.57, ar = 1 and af = 1/(1 + L) = 0.637 in equation (19) and

dividing by the chosen rocket own-time period 3π/32 between respective emissions,

yields 3.063. This clearly corresponds to each of the chart’s radar response intervals

in terms of the rear rocket’s own-time emission interval.

5.4. The rigor mortis real-metric own-surface

Fig. 5 portrays a 3-dimensional ‘real-metric own-surface’ hosting medium curves

which share identical home frame velocities and whose total metric length remains

unchanged in corresponding ever changing inertial frames by virtue of rigor mortis

condition (18). These are crossed by scaled hemix curves tracing respective in-

crement own-times. The unit thrust rear rocket’s increment curve is represented

by equation (7)’s hemix on the inner unit radius hemisphere. The front rocket’s

hemix traverses the outer hemisphere whose radius is 1
αf

= 1+L in accordance with

rigor mortis condition (18) and scaled hemix equation (10). Intermediate increment

hemices are described by the same equations.

For shared home frame velocities, each hemix metrically traces its respective

fixed α-thrust increment’s elapsed own-time since launch: τ = τ
r
/α = τ

r
(1 + l).

The more slowly accelerating increments nearer the front rocket require greater clock

own-times τ than those nearer rear rocket to attain the same shared home frame

velocity v = tanh τ
r

= tanh (τα) = tanh (τ/(1 + l)), and so be relatively stationary

to one another in each comoving inertial frame. In contrast to Fig. 4’s shared curved

velocity loci, in Fig. 5 such loci appear as constant length L straight lines radially

distributed at colatitude angle φ = sin−1 v and spread along the surface at rear

increment own-time intervals ∆τ
r

= 3π/32 for 0 ≤ τ
r
≤ 3π/2.
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Fig. 5. The ‘hemicised’ rigor mortis own-surface

Radar trajectory expressions for respective rear rocket emission own-times τ́ are

obtained by combining forward transit equation (13) which reduces to e−(1+l)τ =

e−τ́ (1+l), and equation (10). Crucially, the repeated forward radar period 3.063· 3π32

is metrically exactly manifest on the rigor mortis own-surface.

6. The rigor mortis real-metric equation

By virtue of the rigor mortis own-surface’s spherically symmetric hemix segments

and its constant length radial medium curves, as a ruled surface it may be trans-

formed to a flat surface as in Fig. 6 without intrinsic surface metric distortions.

Adopting Figure 6’s planar surface’s centre as its origin and using radial coordi-

nates (r, θ), we may therefore write r = 1 + l and θ = τr = τ/(1 + l). A surface’s

‘differential metric’ relates any two minimally apart event points—in the limit.

As dr = dl and dθ = dτ/(1 + l) and our flat surface’s metric interval is ds2 =

dr2 + r2dθ2 i.e. ds2 = dl2 + (1 + l)2dτ2/(1 + l)2, we obtain for the general length

parameter λ which in this special rigor mortis case happens to equal l:

The rigor mortis medium’s own-surface real-metric ds2
RM

= dτ2+dλ2.

(24)

Since all distances and surface angles of the surface’s medium and increment

curves remain unchanged, both surfaces are intrinsically the same i.e. ‘isometric’.

Hence metric (24) applies to both the planar own-surface as well as to the ‘hemicised’

own-surface.
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Fig. 6. The rigor mortis flat own-surface

7. A one-off extended medium vindication of Minkowski’s metric

If we replace the positive sign in our real variables rigor mortis own-surface met-

ric (24) by a negative sign, we obtain the equivalent complex variable Minkowski

spacetime metric interval equation:j

ds2
RM

= dτ2 − dλ2. (25)

Our real metric surface approach has resolved the rigor mortis topic at a quite

elementary level which nevertheless reflects several advanced differential geometry

concepts familiar to relativists used to dealing with the issue in the traditional yet

more obscure Minkowski spacetime approach which, as argued in the following, is

otherwise inapplicable to all other extended medium acceleration scenarios.

8. Homogeneous acceleration—Bell’s string paradox

8.1. Inter-rocket radar intervals

If α
f

= αr = α = 1, time and lengths being rescaled so that α as well as c are one,

forward and reverse radar equations (16) and (17) respectively reduce to:

eτ̀ =
1

[e−τ́ − L]
+ L and eτ̌ = 1/

[
1

[eτ̂ + L]
− L

]
=

[ [
eτ̂ + L

]
1− L(L+ eτ̂ )

]
(26)

jIn its one spatial dimensional form. Sometimes written as ds2 = dλ2 − dτ2.
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So for τ́ < ln(1/L), the unit acceleration rear rocket’s radar interval

τ̀ − τ́ = ln

[
1

e−τ́ − L
+ L

]
− τ́ . (27)

Likewise (from (26)-ii) the front rocket’s radar interval

τ̌ − τ̂ = ln

[
1 + Le−τ̂

1− L(L+ eτ̂ )

]
. (28)

As not generally appreciated,k ‘radar distance’ between identically accelerating

rockets varies i.e. the second postulate does not apply for extended ob-

jects under identical fixed own (‘proper’) acceleration.

8.2. The homogeneously accelerating medium in the home frame

For an idealised ‘massless’ medium between the rockets with each part accelerating

with the same identical unit thrust as the two rockets themselves, equation (9) gives

the unit thrust medium’s home frame world-surface equation

(x− l + 1)2 − t2 = 1. (29)

The medium’s hyperbolic worldlines are shown in Figure 7, with trajectories of pho-

tons emitted from the rear rocket and reflected back from the identically accelerating

front rocket. The vertical lines represent the medium itself at equal rocket own-time

intervals ∆τ . Substitution of L = 0.5548, ∆τ = 3π/32, τ́0 = 0 and τ́1 = 3π/32 in

radar equation (27) yields: τ̀0 − τ́0 = 3π
32 · 3.497 and τ̀1 − τ́1 = 3π

32 · 4.977. These

intervals correspond to those in the computer generated diagram where emitted and

reflected photon trajectories are straightline ±45◦ diagonals (just as in Figure 4).

The fixed velocity loci in this case are just straight lines.

9. Radar mappings from inertial home frame onto own-surface Υ

Figure 8 shows a one-to-one ‘homeomorphic’ mapping of Figure 7’s curves onto a

unit pitch helicoidal own-surface generated by hemix curve H, as established in3

and also discussed earlierl at13:

Hemicoid Υ(τ, l) =

[
tanh τ cos (τ + l) , tanh τ sin (τ + l) ,

1

cosh τ
+ l

]
. (30)

kAn extraordinary example of this ‘historic’ misconception is the much cited AJP 1987 paper12.
lDeutsche Physikalische Gesellschaft 2012 Spring Conference in Göttingen: http://www.dpg-

verhandlungen.de/year/2012/conference/goettingen/part/gr/session/4/contribution/4 .
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Fig. 7. Home frame world-surface of a homogeneously accelerating medium, with reflected and

nonreflected radar trajectories and fixed velocity loci.

9.1. Outgoing photon paths

For an outgoing photon’s radar equation ρ, we turn to radar transit equation (13)

for an arbitrary photon’s rear rocket emission own-time τ́ , with α
f

= αr = 1 and

replace τ̂ with τ and l with −e−τ + e−τ́ in (30):

ρ =

[
tanh τ cos(τ − e−τ + e−τ́ ), tanh τ sin(τ − e−τ + e−τ́ ),

1

cosh τ
− e−τ + e−τ́

]
.

(31)

For the chosen values of L = 0.5548 and ∆τ = 3π
32 , only the first two photons

emitted are reflected. From forward radar transit equation (13) eτ̂ = 1/(e−τ́ − L)

so for a photon whose emission time is τ́ = ln(1/L), eτ̂ =∞. As a medium’s shared

own-time τ approaches ∞, the ‘horizon photon’ trajectory (in black) thus tends to

‘surf ’ the front rocket i.e. get ever closer to it at nearly zero speed, without ever

reaching it. Later photons (coloured yellow) surf respective intermediate medium

increments. A unit thrust medium’s rear rocket-emitted nonreflected

photon trajectories ‘surf’ increment curves in the limit.

9.2. Returning photon paths

Using forward forward and returning transit equations (13) and (14) we obtain:

τ̀ − τ̂ = ln
[
L(e−τ́ − L) + 1

]
, if e−τ́ is very close to L, then τ̀ − τ̂ ≈ ln(1) = 0.

In such a case, as τ approaches ∞ a counter-directional reflected photon would

traverse the medium at a virtually infinite ‘crossing rate’.
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Fig. 8. Own-surface increment and medium curves with radar trajectories

For an emission time τ́ near horizon value ln 1/L, a photon’s return-

ing unit thrust medium’s traversing time tends towards zero. A re-

flected photon would tend to cross the entire medium at a ‘supralu-

minal’ speed. By ‘supraluminal’ (on top of) we mean almost infinite, as opposed to

‘superluminal’—faster-than-light yet finite, speed. We recall that the term ‘speed’

here relates to a medium’s own-length crossings time-rated by an imagined third

party observer recording crossed medium increments’ progressing own-time values.

Of course both emitted and reflected photons always propagate at unit scaled limit

speed in the inertial home frame as well as in all other comoving inertial frames.

9.3. The unit thrust medium’s ‘noninertial length’

Medium curves’ tangent vector moduli on Υ yield the Bell string’s paradox expan-

sion factor (where λ is an increment’s ‘noninertial length’ from the rear rocket):

ε(τ) =
∂λ

∂l
= |Υ

l
| =

√
∂Υ

∂l
· ∂Υ
∂l

=
√

1 + tanh2 τ =
√

1 + v2.

The medium’s total noninertial own-length is Λ = L.
√

1 + tanh2 τ in its proxy non-

inertial frames Π. As ‘viewed’m from such frames, as long as the medium keeps

accelerating, a uniformly accelerating medium never expands beyond the square root

of two times its launch length.

mIn a manner of speaking, since there is no ‘conventional’ way (at least to date) of assessing

‘noninertial length’.
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9.4. The uniform thrust medium’s real metric

Unit thrust own-surface (30) can be expressed in cylindrical coordinates as:

Υ(τ, l) = Cyl [r, θ, z] = Cyl

[
tanh τ, τ + l,

1

cosh τ
+ l

]
.

Total differentials dr, dθ and dz are easily written:

dr =
1

cosh2 τ
dτ ; dθ = dτ + dl; dz =

− sinh(τ)

cosh2 τ
dτ + dl.

As r = v = tanh τ and dλ =
√

1 + tanh2 τ .dl, a surface’s metric in R3 being

ds2
Υ = dr2 +r2dθ2 +dz2 yields the unit thrust medium’s own-surface metric

ds2
Υ = dτ2 + dλ2 + 2 tanh τ

(
tanh τ − 1/ cosh τ√

1 + tanh2 τ

)
dτ.dλ. (32)

Crucially, this contains a variable coefficient mixed differentials expression

2 tanh τ

(
tanh τ − 1/ cosh τ√

1 + tanh2 τ

)
dτ.dλ.

9.5. Minkowski spacetime’s nongenerality in special relativity

Clearly, unit thrust own-surface Υ properly conforms to a formidable set of condi-

tions conceivable for the homogeneous accelerating medium. Its metric (32) there-

fore definitely constitutes a solution to the homogeneous acceleration expansion

problem. Proponents of Minkowski metric’s general validity in special relativity

might argue that another actual solution may lie in pseudo-Euclidean geometry.

After all the rigor mortis’ real metric itself may be so transformed just by replacing

a real coordinate by an ‘equivalent’ imaginary one. Others, perhaps acknowledging

that the hemicoid surface’s properties may well reflect a coincidental solution, might

insist, as claimed by Synge in his well known 1956 classic Relativity: The Special

Theory 14 (Section 11, The fundamental quadratic form, page 17’s equation (20)),

that “a non-singular quadratic form” metric equation “appropriate to Einstein’s

[special] relativity” (such as metric (32), if correct), should be somehow mathe-

matically equivalent i.e. reducible by a ‘coordinate transformation’ to the quadratic

form ds2 = dτ2 − dλ2 (in single spatial dimension metric form). Nevertheless there

is no way that metric (32)’s nonconstant mixed differential terms coefficient could

be cancelled out by some conceivable transformation of coordinates. The nonzero

mixed dτ.dλ term is wholly incompatible with the Minkowski spacetime interval

ds
M

2 = dτ2 − dλ2.

Where one might expect a cogent case for the obfuscating Minkowski approach to

the extended accelerating medium issue to be presented, no consistent arguments

are evident, either in textbooks or papers. A ‘paramount’ book on Minkowski

Spacetime is Naber’s 1992/2010 classic15 which (pages 2-4) discusses separate “ad-

missible” observers’ spacetime frames wherein “photons propagate rectilinearly with
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[scaled] speed 1”. Yet nowhere in Naber’s book, nor indeed in Synge’s work, is the

issue of a homogeneously (or otherwise) accelerating extended medium in special

relativity properly addressed, a surely curious state of affairs and arguably in itself a

firm indication that Minkowski spacetime is not generally valid in special relativity.

In spite of its intriguing title, Brown and Pooley’s 2004 paper Minkowski space-time:

a glorious non-entity 16, is primarily concerned with philosophical matters and does

not specifically address noninertial length issues.

====================================

The remainder of this paper discusses further medium acceleration sce-

narios.

References

1. J. Müller-Regiomontanus, De Triangulis Omnimodis - On Triangles of All

Kinds. Nuremberg / University of Wisconsin Press, 1464 (1533) / 1967.

2. E. P. Loedel, “Aberración y relatividad,” Anales de la Sociedad Cient́ıfica Ar-

gentina, vol. 145, p. 3, 1948.

3. B. Coleman, Spacetime Fundamentals Intelligibly (Re)Learnt. BCS, 2017.

4. B. Coleman, Raumzeittheorie Elementar Neu Begriffen. BCS, 2018.

5. B. Coleman, “Bell’s twin rockets non-inertial length enigma resolved by real

geometry,” Results in Physics, vol. 7, pp. 2575–2581, July 2017.

6. T. S. Davies, “On the equations of loci traced upon the surface of the sphere,

as expressed by spherical co-ordinates,” Transactions of the Royal Society of

Edinburgh, vol. XII, pp. 259–362, 379–428, 1834.

7. R. C. Yates, A Handbook on Curves and their Properties. J. W. Edwards - Ann

Arbor, 1947.

8. B. Coleman, “Minkowski spacetime does not apply to a homogeneously accel-

erating medium,” Results in Physics, vol. 6, pp. 31–38, January 2016.

9. M. Born, “Die Theorie des starren Elektrons in der Kinematik des Rela-

tivitätsprinzips (The theory of the rigid electron in the kinematics of the rela-

tivity principle),” Annalen der Physik, vol. 30, no. 1-56, 1909.

10. N. Woodhouse, Special Relativity. Springer London, 2003.

11. J. Franklin, “Lorentz contraction, Bell’s spaceships and rigid body motion in

special relativity,” Eur. J. Phys., vol. 31, pp. 291–298, 2010.

12. D. A. Desloge and R. J. Philpott, “Uniformly accelerated reference frames in

special relativity,” American Journal of Physics, vol. 55, pp. 252–261, 1987.

13. B. Coleman, “Relativity Acceleration’s Cosmographicum and its Radar Pho-

ton Surfings—A Euclidean Diminishment of Minkowski Spacetime,” Deutsche

Physikalische Gesellschaft, February 2012.

14. J. L. Synge, Relativity: The Special Theory. North-Holland, Amsterdam, 1956.

15. G. L. Naber, The Geometry of Minkowski Spacetime. Springer, 1992, 2010.

16. H. Brown and O. Pooley, “Minkowski space-time: a glorious non-entity,”

British Journal for the Philosophy of Science, 2004.


