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1. Introduction

Effective models remain a good source of information about regions of the QCD

phase diagram inaccessible by terrestrial experiments or by LQCD methods1, pro-

viding qualitative results and theoretical insights. The present work intends to help

in advancing our knowledge towards some of the regions of the QCD phase diagram

through this strategy. When this approach is applied to the study of the transition

of hadronic matter to the deconfined quark matter, it is sugested that the QCD

phase diagram shows a first order phase transition2 at high chemical potentials and

low temperatures, while from the LQCD perspective, the hadron-quark transition

is believed to be a crossover at low chemical potentials and high temperatures. This

seemingly contradictory picture can be reconciled by the existence of a critical end

point in the phase transition curve, linking the LQCD crossover with the effective

model first order transition. This idea is reinforced by experimental results3 signal-

ing to a first order phase transition and pointing out to the possible existence and

location of the critical end point.

Considerations on the phase transition at zero temperature have already been

done in many works4–9, but we do believe the formalism we employ in the present

work is more adequate, as the effective models employed here exhibit chiral sym-

metry in both hadronic and quark phases, which is demanded to take seriously the

appearance of the quarkyonic phase10. The models used here are all included in

the Nambu–Jona-Lasinio (NJL) model framework11, in order to naturally describe

the chiral characteristics of QCD matter.

In Refs. 6 and 9, the hadron-quark phase transition was investigated with the

help of two different models, namely, the non-linear Walecka model (NLWM) for

the hadronic phase and the MIT bag model for the quark phase. A formalism we

understand as a more adequate one was used in Refs. 7, 12, 13 at zero temperature

and in Ref. 8 for finite temperatures, all considering NJL-type models for the two
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phases. To describe the hadron phase, the standard NJL model with vector inter-

action is extended to include a scalar-vector channel in order to render the model

capable of saturation at low densities. We revisit the approach of Refs. 7 and 8,

but applying an extended NJL model for the hadron phase that includes additional

channels to achieve a better description of important nuclear bulk properties14. A

similar extension of the NJL model for hadronic matter has been developed15,16

with a different choice of interaction channels. Recently, this version was also ap-

plied to investigate the hadron-quark phase transition17, but the quark phase was

still described by the MIT bag model. Hence, we describe the hadronic matter with

the extended NJL model from Ref. 14 and the quark matter with the NJL model

in its SU(2) version in order to check for which parameters a phase transition is

possible, considering both symmetric and asymmetric systems. Whenever possible,

the binodal sections are obtained.

2. Binodals

The QCD phase-diagram is characterised by potentially multiple phases, whose

phase separation boundaries are referred as binodals 18. Over those boundaries, the

phases from the regions of either side of the boundary can coexist. The binodals

may be determined using the Gibbs conditions6:

µQ
B = µH

B , TQ = TH , PQ = PH , (1)

where the indexes H and Q refer to the hadronic and quark phases. The chemical

potentials µi
B are obtained from the chemical potentials of the particles of each

phase6.

At a certain fixed temperature (T = 0 in the present context), the phase coexis-

tence condition may be obtained by plotting P i × µi
B , i = Q,H, and looking for the
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Fig. 1. Combinations of parameter sets for which hadron-quark phase transition is not allowed
to happen (left), and combinations for which the transition is allowed to happen (right).
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intersection of both curves. In Fig. 1 (left) we display a combination of parameter-

izations for which there are no intersections, implying that there are no transitions

(i.e., the hadron phase is always more stable). In Fig. 1 (right), we compare the

results for a hadron parameter set with three quark matter parameter sets, with

varying strenght of the vector coupling, obtaining the transitions indicated by the

dots.

The conditions of phase coexistence are also important in asymmetric matter

and to obtain the binodal sections as a function of the system asymmetry, we use

the prescription given in4. The isospin chemical potentials are defined as

µH
3 = µp − µn, µQ

3 = µu − µd, (2)

and enforced to be identical according to the Gibbs conditions. The asymmetry

parameters of the hadron and quark phases are respectively

αH = (ρn − ρp)/(ρn + ρp), αQ = 3(ρd − ρu)(ρd + ρu), (3)

in such a way that 0 ≤ αH ≤ 1 (just nucleons) and 0 ≤ αQ ≤ 3 (just quarks).

The binodals are obtained through the determination of hadron and quarks

phase pressures for each value of µB and µ3 (the µ3 parameter directly controls the

proton fraction of both phases): whenever the pressure difference is below 0.1 MeV,

we assume that both phases coexist. This procedure leads to the results shown

in Fig. 2. The pressures shown for α = 0 in the right panel correspond to the

intersections marked in Figure 1. Also from this figure, we can clearly see that the

increase in strength of the vector coupling causes a substantial modification on the

transition point, which reflects in the values of the pressure in the binodal sections.
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Fig. 2. Baryonic chemical potentials as a function of µ3 (left) and pressure as a function of asym-
metry (right) at the coexistence point for: BuballaR-2 and eNJL2mσρ1 (black line), BuballaR-2

and eNJL3σρ1 (blue long-dashed line), PCP-0.0 and eNJL2mσρ1 (red short-dashed line), PCP-0.0

and eNJL3σρ1 (black double-dot dashed line), PCP-0.1 and eNJL3σρ1 (magenta long-dash dotted
line), and PCP-0.2 and eNJL3σρ1 (orange short-dash dotted line).
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3. Conclusions

We have revisited the study of hadron-quark phase transition at zero temperature

with different extensions of the NJL model, which are more appropriate to describe

systems where chiral symmetry is an important ingredient. We analysed possible

phase transitions from a hadron phase described by an extended NJL model to a

quark phase described by the SU(2) NJL with the inclusion of a vector interaction

of arbitrary strenght. We have first considered symmetric matter and checked that

not all parameterization combinations produce a system in which a phase-transition

is favored. Another manifestation of the dependence of the results on the choice of

parameters is the range of barionic chemical potentials for which the transition takes

place, spanning from around 1300 MeV to around 1800 MeV, indicating a strong

parameter dependence. We have next analysed assymetric systems and whenever

possible, binodal sections were obtained. Both pressures and chemical potential

increase drastically with the increase of the vector interaction strenght in the quark

sector. As a next step on this analysis, we plan to expand our results to include

finite temperature in the system and obtain the complete binodal sections.
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