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The acceleration measured by a light-pulse Atom Interferometer (AI) in a non uniform gravita-
tional field systematically deviates from the true acceleration by a term to first order in the gravity
gradient. A recent proposal to (ideally) cancel out the gravity gradient by means of an appropriate
frequency shift of one laser pulse overcomes the shortcomings of previous proposals based on physi-
cal reversal of the instrument axis, and has already been shown to be effective. However, it does not
eliminate the deviation. This tidal acceleration error affects the absolute measurement of the local
gravitational acceleration at a level that is relevant for the current uncertainty, but it is negligible
in drop tests of the Universality of Free Fall with a dual AI as long as they can rely on the same
laser frequency to interrogate the different atoms species. In gravity gradiometers based on atom
interferometry and used for the measurement of the universal constant of gravity and the detection
of gravitational waves the relevance of the deviation needs to be assessed relative to the target of
the experiment.

Since the gravitational force is not uniform, gravitation
measurements to high precision and accuracy are affected
by systematic gravity gradient (tidal) effects. While tidal
effects are ubiquitous no matter which kind of test masses
and measurement setups are used, the way in which they
affect the measurement, and how they can be reduced,
can differ significantly. In this letter we focus on tidal
effects in gravitation measurements by atom interferom-
etry, referring to similar measurements with bulk masses
only for comparison.

In light-pulse Atom Interferometers (AI) (see e.g. [1,
2]) the atom clouds which constitute the test masses are
subjected to the gravitational field of the Earth. The
equation of motion of a point mass (the center of mass of
an atom cloud or that of a bulk mass alike) falling on the
surface of the Earth, to first order in the Earth’s gravity
gradient, reads:

z̈ =
GM⊕

(R⊕ + z)2
' g◦ − γz(t) (1)

with M⊕, R⊕ the mass and radius of Earth, g◦ = GM⊕
R2

⊕

the local gravitational acceleration, γ = 2g◦
R⊕
' 3.1 ×

10−6 s−2 the Earth’s gravity gradient, and the vertical z
axis pointing downwards. In a perturbative theory ap-
proach the instantaneous position z(t) that multiplies γ
must be of zero order in γ, i.e.:

z(t)|γ=0 = z◦ + v◦t+
1

2
g◦t

2 . (2)

with z◦, v◦ the initial position and velocity of the test
mass. Hence, the equation of motion to first order in γ
is:

z̈ = g◦ − γ
(
z◦ + v◦t+

1

2
g◦t

2
)
. (3)

With three laser pulses at times 0, T, 2T (labeled as 1,2,3)
the AI measures the phase difference [1]:

δΦ = [Φ3 − Φ2]− [Φ2 − Φ1] (4)

and if the momentum transfer k is the same in all
three pulses, at their respective times, then Φ1 = kz(0),
Φ2 = kz(T ), Φ3 = kz(2T ), hence, by integrating twice
the equation of motion (3) in order to obtain z(t) we
have:

δΦ = kT 2
[
g◦ − γ

(
z◦ + v◦T +

7

12
g◦T

2
)]

(5)

yielding a value of the local gravitational acceleration to
first order in γ, as measured by the AI:

g
AI

= g◦ − γ
(
z◦ + v◦T +

7

12
g◦T

2
)
. (6)

The phase difference (5) and the resulting acceleration
(6) have been derived by various authors [1, 3] based on
the tutorial [4], and are generally accepted.

However, by comparing (6) with the obvious equa-
tion(3), the coefficient 7/12 instead of 1/2 in the g◦T

2

term is puzzling. Even more so if we look at free-fall ab-
solute gravimeters in which the motion of the test mass (a
corner-cube retroreflector) is monitored by laser interfer-
ometry. They have achieved the best absolute measure-
ment of the local gravitational acceleration, to 1.1×10−9,
have investigated the motion of the test mass very care-
fully and nowhere in their calculations we see the 7/12
numerical factor ([5], with Appendix 1; [6]). One may be
led to conclude that the discrepancy may be related to
the physical nature of the falling mass, hence to a sort of
“quantum” versus “classical” approach to the problem.
But it is not so. Following a discussion with Neil Ashby,
it was concluded and briefly reported in [7] that the 7/12
factor is simply due to the fact that the AI measures
the acceleration from only three position measurements
of the atom cloud. .

Consider the instantaneous position z(t) to order γ as
obtained from the equation of motion (3):

z(t) = z◦+v◦t+
1

2
g◦t

2 +γ

[
1

2
z◦t

2 +
1

6
v◦t

3 +
1

24
g◦t

4

]
(7)



2

and imagine to have only three values of it available, at
the times of the three laser pulses, i.e. z(0), z(T ), z(2T ).
From these three values we can derive the average veloc-
ity v̄

0−T
in the time interval between the first and the sec-

ond pulse, and the average velocity v̄
T−2T

in the next time
interval, between the second and the third laser pulse.
The change of the mean velocity divided by T yields the
best approximation to the actual value of the acceleration
obtainable from the three positions z(0), z(T ), z(2T ), and
that turns out to be g

AI
with the 7/12 coefficient in the

last term:

g
approx

=
v̄
T−2T

− v̄
0−T

T
=

1

T

[
z(2T )− z(T )

T
− z(T )− z(0)

T

]
= g

AI
.

(8)

Being an approximation to the exact (to order γ) accel-
eration (3), this result does not completely agree with it.
The discrepancy concerns the acceleration term which is
quadratic in time. Since it comes from the position term
containing the time to power four, it is not surprising
that it cannot be recovered correctly from only three po-
sition measurements. The argument holds whatever the
nature of the freely falling test mass.

It follows that, as reported in [7], the acceleration mea-
sured by the light-pulse AI is systematically incorrect by
the amount

∆g
AI

=
1

12
γg◦T

2 . (9)

It has been proposed by [8] that the momentum trans-
fer k2 of the second laser pulse (at time T ) be made
different from the value k applied by the first and third
pulses by an amount ∆k chosen as follows:

k2 = k + ∆k = k − 1

2
γT 2k . (10)

In this case the phase difference, to order γ, measured by
the interferometer reads:

δΦ∆k =

kT 2
[
g◦ − γ

(
z◦ + v◦T +

7

12
g◦T

2
)]

+

−2∆k
[(
z◦ + v◦T +

1

2
g◦T

2
)

+

−γT 2
(1

2
z◦ +

1

6
v◦T +

1

24
g◦T

2
)]

(11)

and, if k2 is exactly as stated in (10), it reduces to:

δΦ∆k = kT 2
(
g◦ −

1

12
γg◦T

2
)

(12)

showing that the tidal acceleration terms γ(z◦ + v◦T ),
proportional to the initial position and velocity of the
atom cloud have been cancelled, but the tidal term (9)
remains, as pointed out by [9].

This fact can be easily explained based on the previ-
ous derivation of (9) and by looking at Fig. 2 of [8]. This
figure shows that the effect of tides is to open up the
trajectories of the two branches of the atom interferom-
eter, unlike in the presence of a uniform field. Thus, the
idea is to apply an appropriate ∆k at the second laser
pulse so as to close the trajectories, as if the atom cloud
were falling in a uniform field. However, the value of
∆k which makes this scheme to work is established on
the basis of the true motion of the atom cloud, and this
motion obeys equation (3); to the contrary, according to
the phase difference measured by the interferometer, it
moves with the acceleration (6). The result is a discrep-
ancy expressed by the acceleration term (9), as found by
[9].

Since this term originates from an incorrect (approxi-
mated) measurement of the acceleration by the atom in-
terferometer, it should be dealt with very carefully when-
ever it is found to be relevant for the gravitation mea-
surement of interest.

The absolute measurement of g performed by [10, 11]
to a relative uncertainty of about 3 × 10−9 is one such
case. At this level systematic errors to first order in γ,
assumed to be given as in (6), are relevant, and very
careful systematic checks have been performed in order to
model them and reduce their contribution to the overall
systematic error of the measurement. With T = 160 ms,
the unmodelled error (9) contributes with an uncertainty
of

∆g
AI

g◦
' 1

12
γT 2 ' 6.6× 10−9 (13)

and would therefore require attention. Were the tech-
nique [8] implemented in this case to cure tidal effects
related to the initial conditions, this error would remain
and although it could be modelled, it is quite intriguing
that the implementation itself would be based on phase
measurements affected by this very same error.

It is also worth stressing that whenever the error (9)
matters, attempts at increasing the time T in order to
increase the sensitivity of the interferometer (the phase
difference grows as T 2) results in increasing this error in
the measured phase difference as T 4, and therefore as T 2

in relative terms.
The main motivation of [8] was to improve the per-

formance of cold atom drop tests of the Universality of
Free Fall (UFF) and the Weak Equivalence Principle
(WEP) by mitigating the limitations imposed by tidal
effects ([2, 7]). These tests are performed by dropping
two clouds of different atoms (or just different isotopes)
A and B in a dual atom interferometer, and measuring
the phase difference for each species, the physical observ-
able being the difference between the two. The preferred
choice for the atom clouds is 87Rb and 85Rb, because
the small isotope shift makes it possible to use the same
laser pulses to simultaneously manipulate the two clouds,
thus avoiding time synchronization errors. This is cer-
tainly very helpful from the experimental point of view,
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but limits the choice of atoms that can be tested.
By applying the proposal [8] with ∆k exactly as re-

quired by (10) we have:

δΦA∆k − δΦB∆k =

kT 2
[(
gA◦ − gB◦

)
− 1

12
γT 2

(
gA◦ − gB◦

)]
.

(14)

The first term yields the Eötvös parameter η =
gA◦ −g

B
◦

g◦
which quantifies the level of UFF-WEP violation and is
exactly zero if there is no violation; the remaining tidal
term, resulting from (9), is a factor

f =
1

12
γT 2 ' 2.6 · 10−7T 2 (15)

smaller than η and negligible, as stated by [7] and [9].
The proposal [8] is therefore worth implementing.

A previous proposal to reduce gravity gradient effects
in this kind of experiments was based on the idea of ro-
tating the instrument axis [12]. In a data set of 10 + 10
drops (10 in one direction and 10 with a reversed axis) the
contribution from gravity gradient would, ideally, cancel
out. The numerical simulations carried out by the pro-
posers report a reduction of the gravity gradient effects
by many orders of magnitude. However, for axis reversal
to work the initial offset vectors between the two atom
clouds must follow the axis reversal of the instrument in
all drops, that is, the cloud which at the initial time was
closer to Earth, must be farther from Earth in the cor-
responding drop with the instrument axis reversed. In-
deed, the simulations assume that “the initial condition
mismatches are 100% fixed to the apparatus”.

While in space tests of the WEP with bulk masses,
such as Microscope and GG [13], it is an obvious assump-
tion that the offset vectors are fixed with the apparatus,
this is not at all obvious in mass dropping tests in which
a very high number of drops (each one with its own ini-
tial conditions) are needed in order to reduce the random
measurement noise of the instrument. Being systematic,
the tidal acceleration error must be below the target ac-
celeration atarget = ηg◦ of the test in all drops. If this
requires a gravity gradient reduction by a factor k, and if
random noise needs a total number of n data sets –each
one based on 10 + 10 drops– to reach atarget, should mis-
match reversal not occur in just 1 single drop out of the
entire measurement, the resulting average acceleration is
already larger then the target:

< a >=
(10n− 1)atarget + katarget

10n
=

atarget

(
1 +

k − 1

10n

)
> atarget .

(16)

The higher the gravity gradient “suppression” factor k,
the more demanding the requirement that initial condi-
tion mismatches obey axis reversal in all drops of the n
sets needed, which typically involve a long integration
time [7].

The proposal [8] is therefore to be preferred. However,
in real experiments exact compensation is not possible
and a residual gravity gradient γres remains, for cloud
A, or B or both, whereby:

δΦA∆k − δΦB∆k =

kT 2
{

(gA◦ − gB◦ )− γres
[
(zA◦ − zB◦ )− (vA◦ − vB◦ )T

]}
.

(17)

The residual tidal acceleration

∆gtide = γres[(z
A
◦ − zB◦ )− (vA◦ − vB◦ )T ] (18)

depending on the initial position and velocity offsets of
the atom clouds, mimics a violation signal and needs to
be separated from it for the WEP test to be meaningful.

A recent implementation in a dual 87Rb and 85Rb in-
terferometer at the 10-m tower drop test of Stanford
University has achieved a reduction by a factor of 100
[14]. The optimal value of ∆k (in fact the corresponding
laser frequency shift) which compensates the gravity gra-
dient and minimizes the phase difference, is established
empirically in a series of drops, from over-compensation
to under-compensation, through best compensation (a
procedure conceptually similar to that used with macro-
scopic bodies in order to achieve the best balancing or the
best compensation of multiple mass moments’ effects). In
addition, the work reports a remarkable relative precision
of ∆g/g ≈ 6×10−11 per shot, while the previous best re-
sult, also with 87Rb and 85Rb, was at the 10−8 level [15].
For this experiment to achieve a WEP test to η = 10−13

the number of drops needed is 3.6 × 105, and becomes
100 times larger for a 10−14 target.

To put things in context, rotating torsion balances
have achieved η ' 10−13 and this has been possible
with a differential acceleration sensitivity which is not
10−13 g ' 10−12 ms−2 as stated in [8], but 10−15 ms−2

[16], because of the lower driving signal for test masses
suspended on the surface of the Earth and rotating with
it at the diurnal frequency [13]. Even the best test ever,
based on preliminary data of the Microscope satellite in
low Earth orbit, to 10−14 [17] has been obtained with a
differential acceleration sensitivity about 70 times worse
than torsion balances, exploiting the fact that the driv-
ing signal in orbit is the gravitational acceleration of the
Earth at the orbiting altitude, similarly to mass dropping
tests [18].

Atom interferometers are used also to perform differ-
ential measurements by means of spatially separated in-
terferometers, with atom clouds of the same species, in-
terrogated by the same laser beam (hence simultaneity is
not a problem). While the physical quantity of interest,
being the differential acceleration between different loca-
tions, is much smaller than the local acceleration itself,
common mode effects are reduced. Gravity gradiometers
based on atom interferometry are used for navigation and
geodesy applications, but also for the measurement of the
universal constant of gravity G and the detection of grav-
itational waves.



4

If the proposal [8] is applied exactly the gradiometer
yields a measurement formally identical to (14) in which
now gA◦ − gB◦ is the differential acceleration measured by
the gradiometer between location A and location B and
the residual error is a factor f = 1

12γT
2 ' 2.6× 10−7T 2

smaller than the differential acceleration measured by the
gradiometer, as in (15). Whenever the differential accel-
eration of interest needs to be measured to this level, this
systematic term must be taken into account and mod-
elled.

As in the case of WEP tests, exact compensation is
impossible. There will be a residual gravity gradient γres
and a residual systematic tidal acceleration depending on
the difference between the initial position and velocity of
the two atom clouds in the different locations A and B of
the gradiometer, as given by (18), which must be smaller
than the target value of the physical observable of interest
in all drops, and demonstrated to be so.

The proposal [8] has already been successfully applied
to a cold atom gradiometer in order to improve the abso-
lute measurement of G [19, 20]. We note that the g◦T

2

term with 7/12 coefficient is incorrectly missing from the
starting Eq. (1) of [19], and that neglecting the residual
term 1

12g◦T
2 in Eq. (3) of both [19] and [20] is likely to

be correct, but should nonetheless be justified in the ab-
solute measurement of a fundamental physical constant.

We have shown that the acceleration measured by

light-pulse AI systematically deviates from its true value
by an acceleration term which is linear in the gravity gra-
dient and quadratic in the time of fall. It does not affect
tests of the UFF by atom interferometers, but is present
when they are used as absolute gravimeters (for the mea-
surement of g) or as gravity gradiometers (for the mea-
surement of G and the detection of gravitational waves).
The need to include this tidal term among systematic
errors, and the extent to which it should be modelled,
depends on the target of the experiment. It is already
relevant for the absolute measurement of g.

A recent proposal to cancel the gravity gradient by ap-
plying an appropriate frequency shift at the second laser
pulse overcomes the shortcomings of previous proposals
and has been demonstrated to be effective. However, it
does not eliminate the systematic deviation term outlined
here. When applied to tests of the UFF, in which this
term is negligible, it allows the requirements on the ini-
tial offsets between the atom species to be relaxed. The
tests require that both species can be interrogated with
the same laser pulses, and this is possible in the presence
of a small isotope shift, as in the case of 87Rb and 85Rb.
Acknowledgements. We thank Giuseppe Catastini
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