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We will present recent results on black holes in effective loop quantum gravity. Quantum
gravity effects might allow the transition of a black hole into a white hole, when the

Planck density is reached. In this talk, I will briefly review previous studies and focus on

the random nature of the bouncing lifetime which has not yet been taken into account.
I will show that, when we consider a stochastic lifetime, the signal emitted by bouncing

black holes might explain the fast radio bursts. Then, I will present recent results on

the emission cross section calculated for a quasi Schwarzschild black hole including loop
quantum gravity corrections. Indeed, the black hole geometry deformation by quantum

effect has consequences for cross section and Hawking spectrum.
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1. Bouncing Black Hole1

A bouncing black hole is described by a classical collapsing solution which is linked

to the classical exploding one by a quantum tunneling. It’s argue2 3 that a black

hole of masse M would have a lifetime of the order of M2. On account of the

tunneling process, the lifetime of a black hole should be considered as a random

variable. The main lifetime of a black hole with a mass M is τ = kM2, with k

chosen to be of the order of 0.052. The probability that a black hole has not yet

bounced after a time t is given by P (t) = 1
τ e
− tτ . This is like the usual nuclear

decay behavior. We focus on local effects and we considered primordial black holes

(PBHs) because we are interesting in black holes which bounce in the contemporary

universe. The number of black holes bouncing after the Hubble time tH in a time

interval dt is:

dN =
N0

kM2
e−

tH
kM2 dt, (1)

where N0 is the initial abundance. The initial differential mass spectrum of the

considered PBHs is given by dN/dM . Photons emitted have a characteristic wave-

length of the order of the size of the black hole (the unique lenght scale of the

problem). We model the shape of the signal emitted by a single black hole by a

Gaussian function:

dNBH
γ

dE
= Ae

− (E−E0)2

2σ2
E , (2)

where E0 = 1/(2RS) = 1/(4M), RS is the Schwarzschild radius. The width is fixed

to be σE = 0.1E0 but the results do not critically depend on this value. The full
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signal due to a local distribution of bouncing black holes is given by

dNγ
dE

=

∫ ∞
MPl

Ae
− (E−E0)2

2σ2
E · dN

dM
(M) · 1

kM2
e−

tH
kM2 . (3)

We considered two types of mass spectrum for the PBHs: a peaked one (4)

(from4 for example) centered around a value M0 and a wide one (5) (from5).

dN

dM
∝ e
− (M−M0)2

2σ2
M , (4)

dN

dM
∝Mα. (5)
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Fig. 1. Differential electromagnetic flux emit-

ted by bouncing PBHs for a central mass M0

equal (from right to left) to MtH , 10MtH ,

100MtH , and 1000MtH .
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Fig. 2. Signal expected from a wide mass spec-

trum, with α = {−3,−2,−1, 0} from the lower
curve to the upper curve at 10−6 eV.

In Fig 1, the expected emitted flux is shown for different values of the central

mass M0 where MtH is the mass satisfying tH = kM2
tH . Because of the stochastic

process, the mean energy of the emitted signal can be different from the determined

one considered in previous studies. If the mass spectrum is peaked around masses

higher than MtH , it is perfectly possible to precisely account for the typical wave-

length of FRBs. Indeed the curve on the left in Fig 1 is peaked around 1.5 GHz. In

Fig 2 we present the expected signal for a wide spectrum. The shape of the mass

spectrum does influence the expected signal (not only the lifetime) as the proba-

bilistic nature of the lifetime is now taken into account: black holes with masses

smaller or larger than MtH do also contribute to the emitted radiation and changing

their relative weights does change the result. This wide spectrum predict that one

should expect a higher flux as the energy increases (up to the infrared band). The

slope of this increase reflects that of the mass spectrum. This is qualitatively quite

independent of the details of the mass spectrum.

The key point of this study was to show that the randomness of the lifetime of

black holes in quantum gravity can drastically change the spectral characteristic of

the expected signal and can lead to predictions.

2. Emission Cross section for Loop Black Hole

Hawking evaporation6 results from the description of a quantum field in a classical

curve space-time. A far external observer would see a particles emission with a
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blackbody spectrum at temperature TH = 1/(8πM), with M the black hole mass.

One considering the gravitational and centrifugal potentials, the thermal distribu-

tion is multiplying by the emission cross section such that the emitted flux is:

dN

dt
=

1

e
ω
TH ± 1

σ(M, s, ω)
d3k

(2π)3
, (6)

with s the particle spin and w its energy. We calculate the cross section for a

loop black hole: it is a quasi Schwarzschild black hole which take into account of

quantum effects of Loop Quantum Gravity describing by the following metric7:

ds2 = −G(r)dt2+
dr2

F (r)
+H(r)dΩ2, (7) G(r) =

(r − r+)(r − r−)(r + r∗)
2

r4 + a20
(8)

F (r) =
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a20)
(9) H(r) = r2 +

a20
r2

(10)

with a0 =
√
3γl2Pl
2 , r+ = 2M , r− = 2MP 2, r∗ =

√
r+r− = 2MP and dΩ2 =

dθ2 + sin2θdφ2. γ is the Barbero-Immirzi parameter, P = (
√

1 + ε2 − 1) is the

polymeric function, ε = γδ, with δ the polymeric parameter. When δ → 0, (7)

tends to the Schwarzschild metric. According to the optical theorem8, the latter is

related to the transmission coefficient for the mode l, Al, by:

σ(ω) =

∞∑
l=0

(2l + 1)π

ω2
|Al|2, (11)

2.1. Massless scalar field

Considering symmetries, the scalar field can be written as Φ(r, θ, φ, t) =

R(r)A(θ)ei(wt+mφ). Its dynamics in a gravitationnal field is described by the gen-

eralized Klein-Gordon equation (12) and with the metric (7) we obtain the radial

equation (13):

1√
−g

∂µ(gµν
√
−g∂νΦ) = 0, (12)

√
GF

H
∂r

(
H
√
GF∂rR

)
+ V R = 0, (13)

with V =
(
ω2 − G

H l(l + 1)
)

and l the orbital quantum number. At the horizon r+,

the radial part of the wave function Rh will be a plane wave (14) with respect to the

tortoise coordinate r∗ defined as dr∗2 ≡ dr2

GF . Infinitly far, the radial wave function

R∞ is a spherically wave (15).

Rh(r∗) = Ahine
−iωr∗ +Ahoute

iωr∗ (14) R∞(r) =
A∞in
r
e−iωr +

A∞out
r

eiωr (15)

with Aiin the probabilty amplitude for incoming mode and Aiout the probabilty

amplitude for outcoming mode.
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Figure 3 : Emission cross section for a

scalar field with an energy ω in a loop

black hole with a mass M for different

value of ε. From bottom to top we have

ε = 10{0.2,0.1,0,−0.1,−0.3,−0.8,−3}. The

blue one is superposed with the cross

section of a Schwarzschild black hole.

From the asymptotic solutions we calcu-

late the transmission amplitude:

|Al|2 = 1−
∣∣∣∣A∞outA∞in

∣∣∣∣2 , (16)

and then we deduce the cross sec-

tion. As far the metric 7 tends to the

Schwarzschild solution when ε tends to

zero, we observe the same behavior for

the cross section. For ε < 10−0.8 we

can’t distinguished the two solutions.

We conclude that taken into account of

the quantum correction does not influ-

ence the cross section of a scalar field

for reasonnable value of ε, that is to say

ε << 1.

2.2. Spin 1
2

field

For spin 1
2 field, we use the Newman-Penrose formalism9 and pursue the Chan-

drasekhar procedure10 to obtain the following radial equation:

√
2H

(
D†
( √

2HDR(r)

λ− iµ∗
√

2H

)
− iµ∗R(r)

)
= λR(r) (17)

with D =
√
F

2
√
2

(
∂rH
H + ∂rG

2G

)
+
√
F√
2
∂r − iω√

2G
and λ2 = (l + 1

2 )2. Computation are in

progress, the results would be presented in an on going redaction article.
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