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In this proceeding we consider a massive charged scalar field in a uniform electric field
background in a de Sitter spacetime (dS). We compute the in-vacuum expectation value

of the trace of the energy-momentum tensor for the created Schwinger pairs, and using

adiabatic subtraction scheme the trace is regularized. The effect of the Schwinger pair
creation on the evolution of the Hubble constant is investigated. We find that the pro-

duction of the semiclassical pairs leads to a decay of the Hubble constant. Whereas, the
production of a light scalar field in the weak electric field regime leads to a superaccel-

eration phenomenon.
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1. Introduction

In a flat spacetime the phenomenon of the pair creation in a strong electric field

background is referred to as the Schwinger effect.1 The presence of the strong elec-

tromagnetic and gravitational fields in the early Universe motivates the study of

the Schwinger effect in dS.2 The Schwinger effect and the induced current of the

created pairs were investigated in a uniform electric field for various dimensions of

the de Sitter spacetime in Refs. 3, 4, 5, 6, 7. Recently, the effect of a conserved flux

magnetic field on the Schwinger effect in dS has been investigated in Ref. 8, see also

Ref. 9. Without considering an electromagnetic field, the energy-momentum tensor

of the created scalar particles in the gravitational background field of dS has been

investigated in Refs. 10, 11, 12, 13, 14, 15, 16, 17, 18. The results of Refs. 10, 15, 16

show that the Hubble constant of dS decays due to the particle creation. Further-
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more, the gravitational backreaction effects of the quantum fluctuations may lead

to a superacceleration phase, where the Hubble constant increase.15 Using a semi-

classical approach the energy-momentum tensor of the created Schwinger scalars

in a dS has been computed in Refs. 6, 19, which showed that the Hubble constant

decays. The trace of the induced energy-momentum tensor of the Schwinger scalars

in a three dimensional dS has been investigated in Ref. 20, and the authors found

that the creation of the semiclassical pairs may lead to an increase of the Hubble

constant. With the aim of developing the renormalization theory in the curved

spacetime, recently the Schwinger effect and the conformal anomaly for both of the

scalar and spinor de Sitter QED cases have been investigated in Ref. 21. With the

aim of completing the work started in Ref. 6 and with cosmological applications

in mind, in this proceeding we compute the trace of the energy-momentum tensor

for the Schwinger scalars created in a uniform electric field background in a four

dimensional dS. The proceeding is organised as follows: in Sec. 2 the preliminary

explanation of our model is introduced. We compute the regularized trace of the

induced energy-momentum tensor in Sec. 3. In Sec. 4 we give some conclusions.

2. Preliminaries

We begin our study by considering the scalar QED action in a four dimensional dS

as

S =

∫
d4x

√
|g|

{
gµν

(
∂µ+ieAµ

)
φ
(
∂ν−ieAν

)
φ∗−

(
m2+ξR

)
φφ∗− 1

4
FµνF

µν
}
, (1)

where φ(x) is a complex scalar field with mass m and electric charge e which is

coupled to an electromagnetic vector potential background Aµ(x). The parameter

ξ is a dimensionless nonminimal coupling of the scalar field to the Ricci scalar R,

and in this proceeding from now on we set ξ = 1/6. The |g| denotes the absolute

value of the metric determinant. In Secs. 2 and 3, we assume that the gravitational

and electromagnetic fields are not affected by the pair creation. This assumption

on the gravitational field does not hold when we discuses backreaction effects in

Sec. 4. We consider the Poincaré patch of dS, whose metric reads

ds2 = Ω2(τ)
(
dτ2 − dx2

)
, Ω(τ) = − 1

τH
, τ ∈ (−∞, 0), x ∈ R3, (2)

where H is the Hubble constant and τ is the conformal time which relates to the

cosmological proper time t as

τ = − 1

H
e−Ht. (3)

Having a uniform electric field with the constant energy density in the metric back-

ground given by Eq. (2), we choose the electromagnetic vector potential in the

gauge

Aµ(τ) = − E

H2τ
δ1µ, (4)
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where E is a constant. The the Klein-Gordon equation for the scalar field reads from

the action (1). We impose that the mode functions of the Klein-Gordon equation

have the asymptotic behavior similar to those mode functions in the Minkowski

spacetime at the early times, τ → −∞. Then, these mode functions that describe

the Hadamard4 in vacuum state are given by5,6

Uink(x) = (2k)−
1
2 e

iπκ
2 Ω−1(τ)e+ik·xWκ,γ

(
2ikτ

)
, (5)

Vink(x) = (2k)−
1
2 e−

iπκ
2 Ω−1(τ)e−ik·xWκ,−γ

(
− 2ikτ

)
, (6)

where Uink and Vink are positive and negative frequency mode functions, respec-

tively. The function W is the Whittaker function, and the variables are defined

as

k :=
∣∣k∣∣, µ :=

m

H
, λ := − eE

H2
, r :=

kx
k
, κ := −iλr, γ2 :=

1

4
− µ2 − λ2. (7)

Then we can expand the scalar field operator ϕ(x) as

ϕ(x) =

∫
d3k

(2π)3

[
Uink(x)aink + Vink(x)b

†
ink

]
, (8)

where aink and b†ink are the annihilation and creation operators for particle and an-

tiparticles with comoving momentum k, respectively, which satisfy the commutation

relations. Then, the in vacuum state is defined by

aink|in⟩ = bink|in⟩ = 0, ∀k. (9)

3. Trace of the Induced Energy-Momentum Tensor

The induced energy-momentum tensor of the created Schwinger pairs is necessary

to study evolution of the de Sitter spacetime. We will compute all of the induced

energy-momentum tensor’s components in a future work. However, in this proceed-

ing we assume that the created Schwinger pairs take the form of a perfect fluid with

the vacuum equation of state. Consequently, the energy-momentum tensor Tµν is

related to its trace T as

Tµν =
1

4
Tgµν . (10)

Hence, it is sufficient to compute the trace of the induced energy-momentum tensor

which is defined by the variation of the action (1) with respect to the variation of

the metric δgµν as

T := − 2√
|g|
gµν

δS

δgµν
. (11)

In the action (1) the Maxwell term, FµνF
µν , is the pure electromagnetic part of the

action which is constant, and according to our assumption is not affected by the

Schwinger pair creation, hence to obtain the trace of the induced energy-momentum

tensor of the Schwinger pairs we do not consider this term. We then obtain

T = 2m2φφ∗. (12)
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Substituting the scalar field operator (8) into the expression (12) and using Eq. (9)

leads to

⟨in|T |in⟩ = 2m2

∫
d3k

(2π)3

∣∣∣Uink

(
x)
∣∣∣2. (13)

Equation (13), in terms of a dimensionless integral variable p = −kτ can be written

as

⟨in|T |in⟩ = H4µ2

4π2

∫ 1

−1

dreλπr
∫ Λ

0

dp p
∣∣∣W−iλr,γ

(
− 2ip

)∣∣∣2, (14)

where the dimensionless momentum cutoff Λ is defined to regularize the ultraviolet

divergency. Following the integration procedure introduced in Refs. 4, 5 we obtain

the unregularized expression for the trace of the induced energy-momentum tensor

⟨in|T |in⟩ = H4µ2

16π2

{
4Λ2 − 4µ2 log(2Λ) + 2µ2 − 8λ2

3
+ 2 + 2iπµ2 − 6γ

π
csc(2πγ)

×
(
cosh(2πλ)− 1

2πλ
sinh(2πλ)

)
+ i csc(2πγ)

∫ 1

−1

dr
(
3r2λ2 − λ2 − µ2

)
×
[(
e2πλr + e2πiγ

)
ψ
(1
2
+ iλr + γ

)
−

(
e2πλr + e−2πiγ

)
ψ
(1
2
+ iλr − γ

)]}
, (15)

where ψ is the digamma function. In order to remove the ultraviolet divergences

from the expression (15) we apply the adiabatic subtraction scheme as introduced

in Ref. 22. However, a new condition for renormalization the vacuum expectation

value of the quantities in the context of de Sitter QED has been introduced in

Ref. 23. The positive frequency mode function of adiabatic zeroth order is given by

UA(x) = Ω−1(τ)
(
2ω(τ)

)− 1
2

exp
(
ik.x− i

∫
ω(τ)dτ

)
, (16)

where the time dependent frequency is

ω(τ) = HΩ(τ)
√
k2τ2 + 2λrkτ + λ2 + µ2. (17)

Using the mode function (16) the zeroth order of the adiabatic expansion of the

trace of the energy-momentum tensor is obtained

TA =
H4µ2

16π2

(
4Λ2 − 4µ2 log(2Λ) + 2µ2 − 8λ2

3

)
. (18)

The adiabatic regularized trace of the induced energy-momentum tensor is given by

subtracting the counterterm (18) from the unregularized expression (15). We then

obtain the regularized trace as

T = ⟨in|T |in⟩ − TA =
H4µ2

16π2

{
2 + 2iπµ2 − 6γ

π
csc(2πγ)

(
cosh(2πλ)

− 1

2πλ
sinh(2πλ)

)
+ i csc(2πγ)

∫ 1

−1

dr
(
3r2λ2 − λ2 − µ2

)[(
e2πλr + e2πiγ

)
× ψ

(1
2
+ iλr + γ

)
−
(
e2πλr + e−2πiγ

)
ψ
(1
2
+ iλr − γ

)]}
. (19)
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Fig. 1. The normalized trace T/H4 is plotted as functions of the normalized electric field λ =

| − eE|/H2, for different values of the normalized scalar field mass µ = m/H.

In Fig. 1 the regularized trace (19) is plotted as function of the electric field for

different values of the scalar field mass. A numerical investigation shows that for

a massive scalar field µ & 1, the sign of the trace is positive. However, for a light

scalar field µ . 1, the trace vanishes at λ = L. In the domain λ < L the sign

of the trace is negative, whereas in the domain λ > L the sign of the trace is

positive. Further numerical investigations illustrate that L ≃ 0.4µ. Therefore in

the semiclassical regime λ2 + µ2 ≫ 1 the sign of the trace is positive, whereas in

the infrared regime λ2 + µ2 ≪ 1 the sign of the trace is negative.

4. Conclusions

These results for the trace of the energy-momentum tensor would be important for

discussing the gravitational backreaction effect of the Schwinger pair creation. As a

consequence of considering the vacuum equation of state for the created Schwinger

pairs, see Eq. (10), the Einstein equation leads to the time evolution equation for

the Hubble constant as10

dH

dt
= − πT

3M2
P

, (20)

where t is the proper cosmological time, see Eq. (3), and MP is the Planck mass.

Considering the results of Sec. 3 for the trace (19) and Eq. (20), we conclude that

in the semiclassical regime λ2 + µ2 ≫ 1, that the sign of the trace is positive the

Hubble constant decays dH/dt < 0. This result is in agreement with the results

obtained in Ref. 6 for the decay of the Hubble constant due to the semiclassical
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Schwinger pair creation. We find that in the infrared regime λ2 + µ2 ≪ 1, that the

sign of the trace is negative, Eq. (20) implies that dH/dt > 0. In Ref. 15 the authors

found that the gravitational backreaction effects of the quantum fluctuations may

lead to a similar behavior of the Hubble constant, i.e., a period of superacceleration

with dH/dt > 0.
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